Oxygen vacancies in CeO2 surface coating to improve the activation of layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries

被引:0
|
作者
Kai Yang
Yanying Liu
Bangbang Niu
Zhe Yang
Jianling Li
机构
[1] China Electric Power Research Institute,School of Metallurgical and Ecological Engineering
[2] University of Science and Technology Beijing,undefined
来源
Ionics | 2019年 / 25卷
关键词
Lithium-ion batteries; Lithium-rich cathode; Surface modification; Oxygen vacancies;
D O I
暂无
中图分类号
学科分类号
摘要
This work reports the surface coating of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material with nano-CeO2 by a versatile hydrothermal method. Thus, obtained nano-CeO2-coated Li1.2Mn0.54Ni0.13Co0.13O2 material was characterized by XRD, SEM, and TEM. It is revealed that the synthesized nano-CeO2 material has rich oxygen vacancies, and a spinel-phase layer is formed on the surface of host material. The electrochemical testing results show that Li1.2Mn0.54Ni0.13Co0.13O2 with 4 wt% CeO2 coating (denoted as C3) has good rate capability and enhanced cyclic stability, enhanced initial discharge capacity of 298.5 mA h g−1 (0.05 C) compared to 281.9 mAh g−1, and excellent initial coulombic efficiency of 86.94% compared to 77.28% for the pristine one in the potential range 2.0–4.8 V (vs. Li/Li+). It is worth noting that this modified strategy greatly reduces the irreversible capacity loss (ICR) of the first cycle of active materials, the ICR of the C3 (44.8 mAh g−1) is markedly lower than pristine material (82.9 mAh g−1) at the current density of 12.5 mA g−1 (0.05 C). Such improvements are mainly ascribed to the oxygen vacancies in nano-CeO2 coating layer, which are responsible for the promoted activation of Li2MnO3. Moreover, the formation of the spinel structure is beneficial to stabilize the crystal lattice of the bulk material and facilitate Li+ diffusion by unique 3D transport channels.
引用
收藏
页码:2027 / 2034
页数:7
相关论文
共 50 条
  • [31] Reactive template synthesis of Li1.2Mn0.54Ni0.13Co0.13O2 nanorod cathode for Li-ion batteries: Influence of temperature over structural and electrochemical properties
    Vivekanantha, Murugan
    Senthil, Chenrayan
    Kesavan, Thangaian
    Partheeban, Thamodaran
    Navaneethan, Mani
    Senthilkumar, Baskar
    Barpanda, Prabeer
    Sasidharan, Manickam
    ELECTROCHIMICA ACTA, 2019, 317 : 398 - 407
  • [32] Hollow Li1.2Mn0.54Ni0.13Co0.13O2 micro-spheres synthesized by a co-precipitation method as a high-performance cathode material for Li-ion batteries
    Li, Yanxiu
    Mei, Jun
    Guo, Xiaodong
    Zhong, Benhe
    Liu, Hao
    Liu, Guobiao
    Dou, Shixue
    RSC ADVANCES, 2016, 6 (74): : 70091 - 70098
  • [33] Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with Li+-conductive Li2SiO3 for lithium ion batteries
    Zhou, Le
    Wu, Yina
    Huang, Jie
    Fang, Xiong
    Wang, Tao
    Liu, Wenming
    Wang, Yang
    Jin, Yuan
    Tang, Xincun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 724 : 991 - 999
  • [34] Preparation and characterization of macroporous Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion batteries via aerogel template
    Shi, S. J.
    Tu, J. P.
    Tang, Y. Y.
    Zhang, Y. Q.
    Wang, X. L.
    Gu, C. D.
    JOURNAL OF POWER SOURCES, 2013, 240 : 140 - 148
  • [35] Oxygen defect engineering for the Li-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2-δ
    Nakamura, Takashi
    Ohta, Kento
    Hou, Xueyan
    Kimura, Yuta
    Tsuruta, Kazuki
    Tamenori, Yusuke
    Aso, Ryotaro
    Yoshida, Hideto
    Amezawa, Koji
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (06) : 3657 - 3667
  • [36] Facile coating of conductive poly(vinylidene fluoride-trifluoroethylene) copolymer on Li1.2Mn0.54Ni0.13Co0.13O2 as a high electrochemical performance cathode for Li-ion battery
    Kong, Ji-Zhou
    Xu, Li-Peng
    Wang, Chun-Lei
    Jiang, You-Xuan
    Cao, Yan-Qiang
    Zhou, Fei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 719 : 401 - 410
  • [37] Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries
    He, Wei
    Qian, Jiangfeng
    Cao, Yuliang
    Ai, Xinping
    Yang, Hanxi
    RSC ADVANCES, 2012, 2 (08): : 3423 - 3429
  • [38] Surface Modification of Li1.2Ni0.13Mn0.54Co0.13O2 by Hydrazine Vapor as Cathode Material for Lithium-Ion Batteries
    Zhang, Jie
    Lei, Zhihong
    Wang, Jiulin
    NuLi, Yanna
    Yang, Jun
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (29) : 15821 - 15829
  • [39] Electrochemical characteristics of li-rich cathode material Li1.2Mn0.54Ni0.13Co0.13O2 with different manganese raw materials
    Yin, Yanping
    Zhuang, Weidong
    Wang, Zhong
    Lu, Huaquan
    Lu, Shigang
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2015, 39 (10): : 891 - 895
  • [40] Cerium fluoride coated layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with improved electrochemical performance for lithium ion batteries
    Lu, Chao
    Wu, Hao
    Zhang, Yun
    Liu, Heng
    Chen, Baojun
    Wu, Naiteng
    Wang, Sen
    JOURNAL OF POWER SOURCES, 2014, 267 : 682 - 691