Multi-objective particle swarm optimization-based adaptive neuro-fuzzy inference system for benzene monitoring

被引:0
|
作者
Husanbir Singh Pannu
Dilbag Singh
Avleen Kaur Malhi
机构
[1] Thapar University,
来源
Neural Computing and Applications | 2019年 / 31卷
关键词
Air quality monitoring; Regression; ANFIS; Benzene;
D O I
暂无
中图分类号
学科分类号
摘要
Air pollutants such as benzene (C6H6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {C}_6\text {H}_6$$\end{document}) have accelerated the rate of cancer among human beings. Currently, atmospheric contamination is measured using spatially separated networks with limited sensors. However, the expenses involving multiple sensors with varying sizes limit the operational efficiency. Therefore, in this paper, a novel multi-objective regression model is proposed to predict benzene concentration in the ambient air pollution data, without need to deploy actual sensors for benzene detection. It is possible because there is a relation among various atmospheric gasses and thus regression can be performed to measure C6H6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {C}_6\text {H}_6$$\end{document} if the concentration level of other gasses is known. Proposed technique utilizes adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) to predict C6H6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {C}_6\text {H}_6$$\end{document} density in the air. PSO is employed to enhance the accuracy of ANFIS for runtime parameter tuning by calculating multi-objective fitness function which involves accuracy, root mean squared error and correlation (r). The proposed technique is tested on well-known publicly available air pollution datasets and on real-time primary dataset for quantitative analysis. Experimental results indicate that the proposed method consistently outperforms over available methods to predict C6H6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {C}_6\text {H}_6$$\end{document} concentration in the atmosphere. Thus, it is well suitable to build self-dependable time and cost-effective benzene prediction model.
引用
收藏
页码:2195 / 2205
页数:10
相关论文
共 50 条
  • [21] Neuro-Fuzzy Modeling for Multi-Objective Test Suite Optimization
    Anwar, Zeeshan
    Ahsan, Ali
    Catal, Cagatay
    JOURNAL OF INTELLIGENT SYSTEMS, 2016, 25 (02) : 123 - 146
  • [22] RETRACTED: Improved Particle Swarm Optimization Based Adaptive Neuro-Fuzzy Inference System for Benzene Detection (Retracted article. See vol. 50, 2022)
    Pannu, Husanbir S.
    Singh, Dilbag
    Malhi, Avleen K.
    CLEAN-SOIL AIR WATER, 2018, 46 (05)
  • [23] Developing an adaptive neuro-fuzzy inference system based on particle swarm optimization model for forecasting Cr(VI) removal by NiO nanoparticles
    Rajabi Kuyakhi, Hossein
    Tahmasebi Boldaji, Ramin
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2021, 40 (04)
  • [24] Multi-Objective Particle Swarm Optimization-based Feature Selection for Face Recognition
    Larabi-Marie-Sainte, Souad
    Ghouzali, Sanaa
    STUDIES IN INFORMATICS AND CONTROL, 2020, 29 (01): : 99 - 109
  • [25] Adaptive Multi-objective Particle Swarm Optimization algorithm
    Tripathi, P. K.
    Bandyopadhyay, Sanghamitra
    Pal, S. K.
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 2281 - +
  • [26] Multi-objective particle swarm optimization based on adaptive grid algorithms
    Yang, Junjie
    Zhou, Jianzhong
    Liu, Fang
    Fang, Rengcun
    Zhong, Jianwei
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 687 - 694
  • [27] Objective Fatigue Measurement through Adaptive Neuro-Fuzzy Inference System
    Ameli, Sina
    Naghdy, Fazel
    Stirling, David
    Naghdy, Golshah
    Aghmesheh, Morteza
    PROCEEDINGS OF 2016 23RD INTERNATIONAL CONFERENCE ON MECHATRONICS AND MACHINE VISION IN PRACTICE (M2VIP), 2016, : 471 - 476
  • [28] Multi-disease big data analysis using beetle swarm optimization and an adaptive neuro-fuzzy inference system
    Parminder Singh
    Avinash Kaur
    Ranbir Singh Batth
    Sukhpreet Kaur
    Gabriele Gianini
    Neural Computing and Applications, 2021, 33 : 10403 - 10414
  • [29] Multi-disease big data analysis using beetle swarm optimization and an adaptive neuro-fuzzy inference system
    Singh, Parminder
    Kaur, Avinash
    Batth, Ranbir Singh
    Kaur, Sukhpreet
    Gianini, Gabriele
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (16): : 10403 - 10414
  • [30] Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm
    Zhang, Wen
    Liu, Yutian
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2008, 30 (09) : 525 - 532