Multi-objective particle swarm optimization-based adaptive neuro-fuzzy inference system for benzene monitoring

被引:0
|
作者
Husanbir Singh Pannu
Dilbag Singh
Avleen Kaur Malhi
机构
[1] Thapar University,
来源
Neural Computing and Applications | 2019年 / 31卷
关键词
Air quality monitoring; Regression; ANFIS; Benzene;
D O I
暂无
中图分类号
学科分类号
摘要
Air pollutants such as benzene (C6H6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {C}_6\text {H}_6$$\end{document}) have accelerated the rate of cancer among human beings. Currently, atmospheric contamination is measured using spatially separated networks with limited sensors. However, the expenses involving multiple sensors with varying sizes limit the operational efficiency. Therefore, in this paper, a novel multi-objective regression model is proposed to predict benzene concentration in the ambient air pollution data, without need to deploy actual sensors for benzene detection. It is possible because there is a relation among various atmospheric gasses and thus regression can be performed to measure C6H6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {C}_6\text {H}_6$$\end{document} if the concentration level of other gasses is known. Proposed technique utilizes adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) to predict C6H6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {C}_6\text {H}_6$$\end{document} density in the air. PSO is employed to enhance the accuracy of ANFIS for runtime parameter tuning by calculating multi-objective fitness function which involves accuracy, root mean squared error and correlation (r). The proposed technique is tested on well-known publicly available air pollution datasets and on real-time primary dataset for quantitative analysis. Experimental results indicate that the proposed method consistently outperforms over available methods to predict C6H6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {C}_6\text {H}_6$$\end{document} concentration in the atmosphere. Thus, it is well suitable to build self-dependable time and cost-effective benzene prediction model.
引用
收藏
页码:2195 / 2205
页数:10
相关论文
共 50 条
  • [1] Multi-objective particle swarm optimization-based adaptive neuro-fuzzy inference system for benzene monitoring
    Pannu, Husanbir Singh
    Singh, Dilbag
    Malhi, Avleen Kaur
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (07): : 2195 - 2205
  • [2] A novel prediction model based on particle swarm optimization and adaptive neuro-fuzzy inference system
    Liu, Xiaoyong
    Zhou, Zhili
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 33 (05) : 3137 - 3143
  • [3] A hybrid-adaptive neuro-fuzzy inference system for multi-objective regression test suites optimization
    Zeeshan Anwar
    Hammad Afzal
    Nazia Bibi
    Haider Abbas
    Athar Mohsin
    Omar Arif
    Neural Computing and Applications, 2019, 31 : 7287 - 7301
  • [4] A hybrid-adaptive neuro-fuzzy inference system for multi-objective regression test suites optimization
    Anwar, Zeeshan
    Afzal, Hammad
    Bibi, Nazia
    Abbas, Haider
    Mohsin, Athar
    Arif, Omar
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (11): : 7287 - 7301
  • [5] Evolutionary design of adaptive neuro-fuzzy inference system based on hybrid cooperative particle swarm optimization
    Wang, Jun-Nian
    Shen, Qun-Tai
    Chen, Xiang-Zhou
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2006, 26 (08): : 48 - 54
  • [6] Prediction of Biochar Yield Using Adaptive Neuro-Fuzzy Inference System With Particle Swarm Optimization
    Abd El Aziz, Mohamed
    Hemdan, Ahmed Monem
    Ewees, Ahmed A.
    Elhoseny, Mohamed
    Shehab, Abdulaziz
    Hassanien, Aboul Ella
    Xiong, Shengwu
    2017 IEEE PES POWERAFRICA CONFERENCE, 2017, : 115 - 120
  • [7] Adaptive neuro-fuzzy inference system and particle swarm optimization: A modern paradigm for securing VANETs
    Thiruppathy Kesavan, V
    Murugavalli, S.
    Premkumar, Manoharan
    Selvarajan, Shitharth
    IET COMMUNICATIONS, 2023, 17 (19) : 2219 - 2236
  • [8] Applying particle swarm optimization algorithm for tuning a neuro-fuzzy inference system for sensor monitoring
    Oliveira, M. V.
    Schirru, R.
    PROGRESS IN NUCLEAR ENERGY, 2009, 51 (01) : 177 - 183
  • [9] Adaptive Neuro-Fuzzy Control Approach Based on Particle Swarm Optimization
    El-Far, Gomaa Zaki
    INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2010, 1 (04) : 1 - 16
  • [10] RETRACTION: Improved Particle Swarm Optimization Based Adaptive Neuro-Fuzzy Inference System for Benzene Detection (Retraction of Vol 46, art no 1700162, 2018)
    Pannu, Husanbir S.
    Singh, Dilbag
    Malhi, Avleen K.
    CLEAN-SOIL AIR WATER, 2022, 50 (05)