A Class of Integral Operators and Generalized Bessel Plancherel Transform on Lα,n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\alpha ,n}^{2}$$\end{document}

被引:0
作者
Moncef Dziri
Nawel Alaya
机构
[1] University of Carthage,Faculty of Sciences of Bizerte
关键词
Integral transform; Fourier transform; Inversion formula; Dual operator;
D O I
10.1007/s00574-018-0109-5
中图分类号
学科分类号
摘要
In this paper we consider a second-order singular differential operator Δα,nu=u′′+((2α+1)/x)u′-4n(α+n)x2u,α>-1/2,n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta _{\alpha ,n}u = u'' + ((2\alpha +1)/x)u'-\frac{4n(\alpha +n)}{x^{2}}u, \alpha >-1/2, n\in {\mathbb {N}}$$\end{document} on the half line which generalize the Bessel operator Δαu=u′′+((2α+1)/x)u′,α>-1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta _{\alpha }u = u'' + ((2\alpha +1)/x)u', \alpha >-1/2 $$\end{document}. A generalized integral transform Tφα,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T_{\varphi }^{\alpha ,n}$$\end{document} associated with Δα,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\alpha ,n}$$\end{document} is studied in Lα,n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L_{\alpha ,n}^{2}$$\end{document} and we have established a relation between Tφα,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T_{\varphi }^{\alpha ,n}$$\end{document} its adjoint and generalized Bessel Plancherel transform ϕα,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _{\alpha ,n}$$\end{document} associated with Δα,n.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\alpha ,n}.$$\end{document} We derive new results concerning the relation between ϕα,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _{\alpha ,n}$$\end{document}, and the generalized Riemann-Liouville transform, generalized Weyl transform, generalized Sonine transform and a Hankel potential type transform associated with Δα,n.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta _{\alpha ,n}.$$\end{document}
引用
收藏
页码:435 / 456
页数:21
相关论文
共 6 条
[1]  
Al Subaie RF(2013)Transmutation operators associated with a Bessel type operator on the half line and certain of their applications Tamsui Oxf. J. Inform. Math. Sci. 29 329-349
[2]  
Mourou MA(2015)Generalized Bessel transform of Proc. Jpn. Acad. Ser. A 91 85-88
[3]  
Daher R(1972) generalized Bessel Lipschitz functions Proc. Am. Math. Soc. 33 467-484
[4]  
El Hamma M(1989)Certain operators and Fourier transforms on Oxford, UK, 1937 106 727-733
[5]  
Goldberg RR(undefined)Introduction of the theory of Fourier Integrals undefined undefined undefined-undefined
[6]  
Titchmarsh EC(undefined)undefined undefined undefined undefined-undefined