Mixed-integer quadratic programming is in NP

被引:0
|
作者
Alberto Del Pia
Santanu S. Dey
Marco Molinaro
机构
[1] University of Wisconsin-Madison,Department of Industrial and Systems Engineering & Wisconsin Institute for Discovery
[2] PUC-Rio,Computer Science Department
来源
Mathematical Programming | 2017年 / 162卷
关键词
Quadratic programming; Integer programming; Complexity; 90C11; 90C20; 90C60;
D O I
暂无
中图分类号
学科分类号
摘要
Mixed-integer quadratic programming is the problem of optimizing a quadratic function over points in a polyhedral set where some of the components are restricted to be integral. In this paper, we prove that the decision version of mixed-integer quadratic programming is in NP, thereby showing that it is NP-complete. This is established by showing that if the decision version of mixed-integer quadratic programming is feasible, then there exists a solution of polynomial size. This result generalizes and unifies classical results that quadratic programming is in NP (Vavasis in Inf Process Lett 36(2):73–77 [17]) and integer linear programming is in NP (Borosh and Treybig in Proc Am Math Soc 55:299–304 [1], von zur Gathen and Sieveking in Proc Am Math Soc 72:155–158 [18], Kannan and Monma in Lecture Notes in Economics and Mathematical Systems, vol. 157, pp. 161–172. Springer [9], Papadimitriou in J Assoc Comput Mach 28:765–768 [15]).
引用
收藏
页码:225 / 240
页数:15
相关论文
共 50 条
  • [41] Improving patient transportation in hospitals using a mixed-integer programming model
    Seguin, Sara
    Villeneuve, Yoan
    Blouin-Delisle, Charles-Hubert
    OPERATIONS RESEARCH FOR HEALTH CARE, 2019, 23
  • [42] A mixed-integer programming formulation for optimizing the double row layout problem
    Amaral, Andre R. S.
    OPTIMIZATION METHODS & SOFTWARE, 2024, 39 (06) : 1428 - 1444
  • [43] A mixed-integer programming approach for solving university course timetabling problems
    Efstratios Rappos
    Eric Thiémard
    Stephan Robert
    Jean-François Hêche
    Journal of Scheduling, 2022, 25 : 391 - 404
  • [44] A mixed-integer programming approach for solving university course timetabling problems
    Rappos, Efstratios
    Thiemard, Eric
    Robert, Stephan
    Heche, Jean-Francois
    JOURNAL OF SCHEDULING, 2022, 25 (04) : 391 - 404
  • [45] Ranking in quadratic integer programming problems
    Gupta, R
    Bandopadhyaya, L
    Puri, MC
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1996, 95 (01) : 231 - 236
  • [46] Embedded Mixed-Integer Quadratic Optimization using Accelerated Dual Gradient Projection
    Naik, Vihangkumar V.
    Bemporad, Alberto
    IFAC PAPERSONLINE, 2017, 50 (01): : 10723 - 10728
  • [47] Ellipsoidal mixed-integer representability
    Alberto Del Pia
    Jeffrey Poskin
    Mathematical Programming, 2018, 172 : 351 - 369
  • [48] MINTO, A MIXED-INTEGER OPTIMIZER
    NEMHAUSER, GL
    SAVELSBERGH, MWP
    SIGISMONDI, GC
    OPERATIONS RESEARCH LETTERS, 1994, 15 (01) : 47 - 58
  • [49] Ellipsoidal mixed-integer representability
    Del Pia, Alberto
    Poskin, Jeffrey
    MATHEMATICAL PROGRAMMING, 2018, 172 (1-2) : 351 - 369
  • [50] QUADRATIC-PROGRAMMING IS IN NP
    VAVASIS, SA
    INFORMATION PROCESSING LETTERS, 1990, 36 (02) : 73 - 77