The degenerated second main theorem and Schmidt’s subspace theorem

被引:0
作者
ZhiHua Chen
Min Ru
QiMing Yan
机构
[1] Tongji University,Department of Mathematics
[2] University of Houston,Department of Mathematics
来源
Science China Mathematics | 2012年 / 55卷
关键词
Nevanlinna theory; holomorphic curve; Second Main Theorem; Diophantine approximation; Schmidt’s Subspace Theorem; 32H30; 11J68; 11J25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish a Second Main Theorem for an algebraically degenerate holomorphic curve f: ℂ → ℙn(ℂ) intersecting hypersurfaces in general position. The related Diophantine problems are also considered.
引用
收藏
页码:1367 / 1380
页数:13
相关论文
共 19 条
  • [1] Cartan H.(1933)Sur les zeros des combinaisions linearires de Mathematica 7 80-103
  • [2] Corvaja P.(2004) fonctions holomorpes donnees Amer J Math 126 1033-1055
  • [3] Zannier U.(1992)On a general Thue’s equation St Petersburg Math J 3 109-136
  • [4] Eremenko A. E.(2002)The value distribution of meromorphic functions and meromorphic curves from the point of view of potential theory Int Math Res Notices 25 1295-1330
  • [5] Sodin M. L.(1998)Diophantine inequalities on projective varieties Acta Arith 86 227-237
  • [6] Evertse J. H.(1982)Integer solutions of a sequence of decomposable form inequalities Izv Moldavian Acad, Sc for Phy & Math Sc 1 41-47
  • [7] Ferretti R. G.(1983)Defect relations of meromorphic curves Sov Math Dokl 27 377-381
  • [8] Györy K.(1997)On the theory of meromorphic functions Trans Amer Math Soc 349 5093-5105
  • [9] Ru M.(2004)On a general form of the Second Main Theorem Amer J Math 126 215-226
  • [10] Nochka E. I.(2009)A defect relation for holomorphic curves intersecting hypersurfaces Ann of Math 169 255-267