Submaximal Soluble Subgroups of Odd Index in Alternating Groups

被引:0
作者
D. O. Revin
机构
[1] Sobolev Institute of Mathematics,
[2] Novosibirsk State University,undefined
来源
Siberian Mathematical Journal | 2021年 / 62卷
关键词
complete class of finite groups; subgroup of odd index; alternating group; symmetric group; soluble group; maximal soluble group; submaximal soluble group; 512.542;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathfrak{X}}} $\end{document} be a class of finite groups containing a group of even order and closed under subgroups, homomorphic images, and extensions. Then each finite group possesses a maximal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathfrak{X}}} $\end{document}-subgroup of odd index and the study of the subgroups can be reduced to the study of the so-called submaximal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathfrak{X}}} $\end{document}-subgroups of odd index in simple groups. We prove a theorem that deduces the description of submaximal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathfrak{X}}} $\end{document}-subgroups of odd index in an alternating group from the description of maximal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathfrak{X}}} $\end{document}-subgroups of odd index in the corresponding symmetric group. In consequence, we classify the submaximal soluble subgroups of odd index in alternating groups up to conjugacy.
引用
收藏
页码:313 / 323
页数:10
相关论文
共 28 条
  • [1] Galois É(1846)Mémoire sur les conditions de résolubilité des équations par radicaux J. Math. Pures Appl. (Liouville) 11 417-433
  • [2] Jordan CM(1865)Commentaire sur le Mémoire de Galois Comptes Rendus 60 770-774
  • [3] Guo W(2018)Maximal and submaximal Algebra and Logic 57 9-28
  • [4] Revin DO(2018)-subgroups Commun. Math. Stat. 6 289-317
  • [5] Guo W(1987)Pronormality and submaximal J. Algebra 106 15-45
  • [6] Revin DO(1985)-subgroups in finite groups J. Lond. Math. Soc., II. Ser. 31 250-264
  • [7] Kantor WM(2018)Primitive permutation groups of odd degree, and an application to finite projective planes Sib. Electr. Math. Reports 15 707-718
  • [8] Liebeck MW(2009)The primitive permutation groups of odd degree Proc. Steklov Inst. Math. (Suppl. Issues) 267 S164-S183
  • [9] Saxl J(2014)Classification of maximal subgroups of odd index in finite simple classical groups: addendum Proc. Steklov Inst. Math. 285 S136-S138
  • [10] Maslova NV(2010)Classification of maximal subgroups of odd index in finite simple classical groups Trudy Inst. Mat. i Mekh. UrO RAN 16 237-245