Frobenius manifolds and Frobenius algebra-valued integrable systems

被引:0
作者
Ian A. B. Strachan
Dafeng Zuo
机构
[1] University of Glasgow,School of Mathematics and Statistics
[2] University of Science and Technology of China,School of Mathematical Science
[3] University of Science and Technology of China,Wu Wen
[4] Chinese Academy of Sciences,Tsun Key Laboratory of Mathematics
来源
Letters in Mathematical Physics | 2017年 / 107卷
关键词
Frobenius manifold; Integrable systems; Topological quantum field theory; Bi-Hamiltonian structures; Primary 53D45; Secondary 37K10; 35Q53;
D O I
暂无
中图分类号
学科分类号
摘要
The notion of integrability will often extend from systems with scalar-valued fields to systems with algebra-valued fields. In such extensions the properties of, and structures on, the algebra play a central role in ensuring integrability is preserved. In this paper, a new theory of Frobenius algebra-valued integrable systems is developed. This is achieved for systems derived from Frobenius manifolds by utilizing the theory of tensor products for such manifolds, as developed by Kaufmann (Int Math Res Not 19:929–952, 1996), Kontsevich and Manin (Inv Math 124: 313–339, 1996). By specializing this construction, using a fixed Frobenius algebra A,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}},$$\end{document} one can arrive at such a theory. More generally, one can apply the same idea to construct an A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}-valued topological quantum field theory. The Hamiltonian properties of two classes of integrable evolution equations are then studied: dispersionless and dispersive evolution equations. Application of these ideas are discussed, and as an example, an A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}-valued modified Camassa–Holm equation is constructed.
引用
收藏
页码:997 / 1026
页数:29
相关论文
共 33 条
  • [1] Arnold VI(1971)On matrices depending on parameters Russ. Math. Surv. 26 29-44
  • [2] Balinskii AA(1985)Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras Sov. Math. Dokl. 32 228-231
  • [3] Novikov SP(1994)Multi-component KdV hierarchy, V-algebra and non-abelian Toda theory Lett. Math. Phys. 32 103-150
  • [4] Bilal A(1995)Non-local matrix generalizations of W-algebras Commu. Math. Phys. 170 117-297
  • [5] Bilal A(1984)Poisson brackets of hydrodynamic type Sov. Math. Dokl. 279 294-243
  • [6] Dubrovin B(1996)Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation Phys. D 95 229-1126
  • [7] Novikov SP(2010)Purely non-local Hamiltonian formalism for systems of hydrodynamic type J. Geom. Phys. 60 1112-286
  • [8] Fuchssteiner B(1999)Weak Frobenius manifolds Int. Math. Res. Not. 6 277-952
  • [9] Gibbons J(1996)The intersection form in Int. Math. Res. Not. 19 929-339
  • [10] Lorenzoni P(1996) and the explicit Künneth formula in quantum cohomology Inv. Math. 124 313-591