Dimensions of Fractional Brownian Images

被引:0
作者
Stuart A. Burrell
机构
[1] University of St Andrews,School of Mathematics and Statistics
来源
Journal of Theoretical Probability | 2022年 / 35卷
关键词
Intermediate dimensions; Box dimension; Hausdorff dimension; Fractional Brownian motion; Capacity; Exceptional directions; Primary: 28A80; 60G22; Secondary: 60G15;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns the intermediate dimensions, a spectrum of dimensions that interpolate between the Hausdorff and box dimensions. Potential-theoretic methods are used to produce dimension bounds for images of sets under Hölder maps and certain stochastic processes. We apply this to compute the almost-sure value of the dimension of Borel sets under index-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} fractional Brownian motion in terms of dimension profiles defined using capacities. As a corollary, this establishes continuity of the profiles for Borel sets and allows us to obtain an explicit condition showing how the Hausdorff dimension of a set may influence the typical box dimension of Hölder images such as projections. The methods used propose a general strategy for related problems; dimensional information about a set may be learned from analysing particular fractional Brownian images of that set. To conclude, we obtain bounds on the Hausdorff dimension of exceptional sets, with respect to intermediate dimensions, in the setting of projections.
引用
收藏
页码:2217 / 2238
页数:21
相关论文
共 50 条
  • [31] On the prediction of fractional Brownian motion
    Gripenberg, G
    Norros, I
    JOURNAL OF APPLIED PROBABILITY, 1996, 33 (02) : 400 - 410
  • [32] On Fractional Brownian Motion and Wavelets
    S. Albeverio
    P. E. T. Jorgensen
    A. M. Paolucci
    Complex Analysis and Operator Theory, 2012, 6 : 33 - 63
  • [33] Piecewise fractional Brownian motion
    Perrin, E
    Harba, R
    Iribarren, I
    Jennane, R
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (03) : 1211 - 1215
  • [34] On Fractional Brownian Motion and Wavelets
    Albeverio, S.
    Jorgensen, P. E. T.
    Paolucci, A. M.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (01) : 33 - 63
  • [35] Fine properties of fractional Brownian motions on Wiener space
    Li, Jiawei
    Qian, Zhongmin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 473 (01) : 141 - 173
  • [36] Arbitrage with fractional Brownian motion
    Rogers, LCG
    MATHEMATICAL FINANCE, 1997, 7 (01) : 95 - 105
  • [37] FRACTIONAL BROWNIAN VECTOR FIELDS
    Tafti, Pouya Dehghani
    Unser, Michael
    MULTISCALE MODELING & SIMULATION, 2010, 8 (05) : 1645 - 1670
  • [38] Fractal (fractional) Brownian motion
    Chow, Winston C.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2011, 3 (02): : 149 - 162
  • [39] Trading Fractional Brownian Motion
    Guasoni, Paolo
    Nika, Zsolt
    Rasonyi, Miklos
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2019, 10 (03): : 769 - 789
  • [40] A Fractional Linear System View of the Fractional Brownian Motion
    Manuel Duarte Ortigueira
    Arnaldo Guimarães Batista
    Nonlinear Dynamics, 2004, 38 : 295 - 303