Dimensions of Fractional Brownian Images

被引:0
作者
Stuart A. Burrell
机构
[1] University of St Andrews,School of Mathematics and Statistics
来源
Journal of Theoretical Probability | 2022年 / 35卷
关键词
Intermediate dimensions; Box dimension; Hausdorff dimension; Fractional Brownian motion; Capacity; Exceptional directions; Primary: 28A80; 60G22; Secondary: 60G15;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns the intermediate dimensions, a spectrum of dimensions that interpolate between the Hausdorff and box dimensions. Potential-theoretic methods are used to produce dimension bounds for images of sets under Hölder maps and certain stochastic processes. We apply this to compute the almost-sure value of the dimension of Borel sets under index-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} fractional Brownian motion in terms of dimension profiles defined using capacities. As a corollary, this establishes continuity of the profiles for Borel sets and allows us to obtain an explicit condition showing how the Hausdorff dimension of a set may influence the typical box dimension of Hölder images such as projections. The methods used propose a general strategy for related problems; dimensional information about a set may be learned from analysing particular fractional Brownian images of that set. To conclude, we obtain bounds on the Hausdorff dimension of exceptional sets, with respect to intermediate dimensions, in the setting of projections.
引用
收藏
页码:2217 / 2238
页数:21
相关论文
共 50 条
  • [21] FRACTIONAL MARTINGALES AND CHARACTERIZATION OF THE FRACTIONAL BROWNIAN MOTION
    Hu, Yaozhong
    Nualart, David
    Song, Jian
    ANNALS OF PROBABILITY, 2009, 37 (06) : 2404 - 2430
  • [22] Weak convergence to fractional Brownian motion in Brownian scenery
    Wensheng Wang
    Probability Theory and Related Fields, 2003, 126 : 203 - 220
  • [23] Hausdorff dimension of the record set of a fractional Brownian motion
    Benigni, Lucas
    Cosco, Clement
    Shapira, Assaf
    Wiese, Kay Jorg
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
  • [24] Regularity of Intersection Local Times of Fractional Brownian Motions
    Wu, Dongsheng
    Xiao, Yimin
    JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (04) : 972 - 1001
  • [25] Regularity of Intersection Local Times of Fractional Brownian Motions
    Dongsheng Wu
    Yimin Xiao
    Journal of Theoretical Probability, 2010, 23 : 972 - 1001
  • [26] On the Fourier structure of the zero set of fractional Brownian motion
    Fouche, Willem L.
    Mukeru, Safari
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (02) : 459 - 466
  • [27] Are Fractional Brownian Motions Predictable?
    Jakubowski, Adam
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS VI, 2011, 63 : 159 - 165
  • [28] Horizons of fractional Brownian surfaces
    Falconer, KJ
    Véhel, JL
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2001): : 2153 - 2178
  • [29] Approximations of fractional Brownian motion
    Li, Yuqiang
    Dai, Hongshuai
    BERNOULLI, 2011, 17 (04) : 1195 - 1216
  • [30] Deconvolution of fractional Brownian motion
    Pipiras, V
    Taqqu, MS
    JOURNAL OF TIME SERIES ANALYSIS, 2002, 23 (04) : 487 - 501