Dimensions of Fractional Brownian Images

被引:0
作者
Stuart A. Burrell
机构
[1] University of St Andrews,School of Mathematics and Statistics
来源
Journal of Theoretical Probability | 2022年 / 35卷
关键词
Intermediate dimensions; Box dimension; Hausdorff dimension; Fractional Brownian motion; Capacity; Exceptional directions; Primary: 28A80; 60G22; Secondary: 60G15;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns the intermediate dimensions, a spectrum of dimensions that interpolate between the Hausdorff and box dimensions. Potential-theoretic methods are used to produce dimension bounds for images of sets under Hölder maps and certain stochastic processes. We apply this to compute the almost-sure value of the dimension of Borel sets under index-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} fractional Brownian motion in terms of dimension profiles defined using capacities. As a corollary, this establishes continuity of the profiles for Borel sets and allows us to obtain an explicit condition showing how the Hausdorff dimension of a set may influence the typical box dimension of Hölder images such as projections. The methods used propose a general strategy for related problems; dimensional information about a set may be learned from analysing particular fractional Brownian images of that set. To conclude, we obtain bounds on the Hausdorff dimension of exceptional sets, with respect to intermediate dimensions, in the setting of projections.
引用
收藏
页码:2217 / 2238
页数:21
相关论文
共 50 条
  • [1] Dimensions of Fractional Brownian Images
    Burrell, Stuart A.
    JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (04) : 2217 - 2238
  • [2] Sojourn time dimensions of fractional Brownian motion
    Nourdin, Ivan
    Peccati, Giovanni
    Seuret, Stephane
    BERNOULLI, 2020, 26 (03) : 1619 - 1634
  • [3] Intermediate dimension of images of sequences under fractional Brownian motion
    Falconer, Kenneth J.
    STATISTICS & PROBABILITY LETTERS, 2022, 182
  • [4] Asymptotic Properties and Hausdorff Dimensions of Fractional Brownian Sheets
    Antoine Ayache
    Yimin Xiao
    Journal of Fourier Analysis and Applications, 2005, 11 : 407 - 439
  • [5] Fractal dimensions of rough differential equations driven by fractional Brownian motions
    Lou, Shuwen
    Ouyang, Cheng
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (08) : 2410 - 2429
  • [6] Securing images with a diffusion mechanism based on Fractional Brownian Motion
    Kumar, Manish
    Kumar, Sunil
    Das, M. K.
    Budhiraja, Rajat
    Singh, Sanjeev
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2018, 40 : 134 - 144
  • [7] Is it Brownian or fractional Brownian motion?
    Li, Meiyu
    Gencay, Ramazan
    Xue, Yi
    ECONOMICS LETTERS, 2016, 145 : 52 - 55
  • [8] Dimensional Properties of Fractional Brownian Motion
    Dong Sheng Wu
    Yi Min Xiao*
    Acta Mathematica Sinica, English Series, 2007, 23 : 613 - 622
  • [9] Geometric Properties of Fractional Brownian Sheets
    Dongsheng Wu
    Yimin Xiao
    Journal of Fourier Analysis and Applications, 2007, 13 : 1 - 37
  • [10] Dimensional Properties of Fractional Brownian Motion
    Dong Sheng WU Yi Min XIAO Department of Statistics and Probability
    Acta Mathematica Sinica(English Series), 2007, 23 (04) : 613 - 622