Univariable affine fractal interpolation functions

被引:0
作者
V. Drakopoulos
N. Vijender
机构
[1] Department of Computer Science and Biomedical Informatics,
[2] University of Thessaly,undefined
[3] Department Mathematics,undefined
[4] Visvesvaraya National Institute of Technology,undefined
来源
Theoretical and Mathematical Physics | 2021年 / 207卷
关键词
attractor; dynamic system; fractal interpolation; iterated function system;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:689 / 700
页数:11
相关论文
共 27 条
  • [1] Hutchinson J. E.(1981)Fractals and self-similarity Indiana Univ. Math. J. 30 713-747
  • [2] Barnsley M. F.(1986)Fractal functions and interpolation Constr. Approx. 2 303-329
  • [3] Maragos P.(1991)Fractal aspects of speech signals: dimension and interpolation Proceedings ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing 0 417-420
  • [4] Chand A. K. B.(2006)Generalized cubic spline fractal interpolation functions SIAM J. Numer. Anal. 44 655-676
  • [5] Kapoor G. P.(2014)Fractal perturbation preserving fundamental shapes: bounds on the scale factors J. Math. Anal. Appl. 419 804-817
  • [6] Viswanathan P.(2018)Bernstein fractal trigonometric approximation Acta Appl. Math. 159 11-27
  • [7] Chand A. K. B.(2017)On self-affine and self-similar graphs of fractal interpolation functions generated from iterated function systems Fractal Analysis: Applications in Health Sciences and Social Sciences 0 187-205
  • [8] Navascués M. A.(2020)How are fractal interpolation functions related to several contractions? Mathematical Theorems – Boundary Value Problems and Approximations 0 0-285
  • [9] Vijender N.(2007)Construction of affine fractal functions close to classical interpolants J. Comput. Anal. Appl. 9 271-194
  • [10] Dillon S.(2014)Shape preserving affine fractal interpolation surfaces Nonlinear Stud. 21 179-421