On linearly related orthogonal polynomials in several variables

被引:0
作者
Manuel Alfaro
Ana Peña
Teresa E. Pérez
M. Luisa Rezola
机构
[1] Universidad de Zaragoza,Departamento de Matemáticas and IUMA
[2] Universidad de Granada,Departamento de Matemática Aplicada
来源
Numerical Algorithms | 2014年 / 66卷
关键词
Multivariate orthogonal polynomials; Three term relations; Moment functionals; 42C05; 33C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let {ℙn}n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\mathbb{P}_{n}\}_{n\ge 0}$\end{document} and {ℚn}n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{\mathbb{Q}_{n}\}_{n\ge 0}$\end{document} be two monic polynomial systems in several variables satisfying the linear structure relation ℚn=ℙn+Mnℙn−1,n≤1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Q}_{n} = \mathbb{P}_{n} + M_{n} \mathbb{P}_{n-1}, \quad n\ge 1,$\end{document}where Mn are constant matrices of proper size and ℚ0=ℙ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Q}_{0} = \mathbb{P}_{0}$\end{document}. The aim of our work is twofold. First, if both polynomial systems are orthogonal, characterize when that linear structure relation exists in terms of their moment functionals. Second, if one of the two polynomial systems is orthogonal, study when the other one is also orthogonal. Finally, some illustrative examples are presented.
引用
收藏
页码:525 / 553
页数:28
相关论文
共 66 条
[1]  
Alfaro M(2003)On linearly related orthogonal polynomials and their functionals J. Math. Anal. Appl. 287 307-319
[2]  
Marcellán F(2010)When do linear combinations of orthogonal polynomials yield new sequences of orthogonal polynomials J. Comput. Appl. Math. 233 1446-1452
[3]  
Peña A(2013)Orthogonal polynomials generated by a linear structure relation: inverse problem J. Math. Anal. Appl. 401 182-197
[4]  
Rezola ML(2011)Orthogonal polynomials associated with an inverse quadratic spectral transform Comput. Math. Appl. 61 888-900
[5]  
Alfaro M(2005)The zeros of linear combinations of orthogonal polynomials J. Approx. Theory 137 179-186
[6]  
Marcellán F(1995)Multivariate Gaussian cubature formula Arch. Math. 64 26-32
[7]  
Peña A(2004)Quasi–orthogonality with applications to some families of classical orthogonal polynomials Appl. Numer. Math. 48 157-168
[8]  
Rezola ML(2012)On the Uvarov modification of two variable orthogonal polynomials on the disk Complex Anal. Oper. Theory 6 665-676
[9]  
Alfaro M(2010)Orthogonal polynomials in several variables for measures with mass points Numer. Algorithms 55 245-264
[10]  
Peña A(2009)On a two–variable class of Bernstein–Szegő Measures Constr. Approx. 30 71-91