Research on single-machine scheduling with position-dependent weights and past-sequence-dependent delivery times

被引:0
作者
Ji-Bo Wang
Bo Cui
Ping Ji
Wei-Wei Liu
机构
[1] Shenyang Aerospace University,School of Science
[2] The Hong Kong Polytechnic University,Department of Industrial and Systems Engineering
[3] Shenyang Sport University,Department of Science
来源
Journal of Combinatorial Optimization | 2021年 / 41卷
关键词
Delivery time; Position-dependent weight; Single-machine; Scheduling;
D O I
暂无
中图分类号
学科分类号
摘要
This article studies scheduling problems with past-sequence-dependent delivery times (denoted by psddt) on a single-machine, i.e., the delivery time of a job depends on its waiting time of processing. We prove that the total (discounted) weighted completion time minimization can be solved in O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\log n)$$\end{document} time, where n is the number of jobs, and the weight is a position-dependent weight. For common (denoted by con) and slack (denoted by slk) due-date assignment and position-dependent weights (denoted by pdw), we prove that an objective cost minimization is solvable in O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\log n)$$\end{document} time. The model (i.e., psddt and pdw) can also be extended to position-dependent (time-dependent) processing times.
引用
收藏
页码:290 / 303
页数:13
相关论文
共 81 条
[31]  
Zheng F(undefined)undefined undefined undefined undefined-undefined
[32]  
Chu C(undefined)undefined undefined undefined undefined-undefined
[33]  
Xu Y(undefined)undefined undefined undefined undefined-undefined
[34]  
Liu W(undefined)undefined undefined undefined undefined-undefined
[35]  
Hu X(undefined)undefined undefined undefined undefined-undefined
[36]  
Wang X-Y(undefined)undefined undefined undefined undefined-undefined
[37]  
Lu Y-Y(undefined)undefined undefined undefined undefined-undefined
[38]  
Lu Y-Y(undefined)undefined undefined undefined undefined-undefined
[39]  
Liu J-Y(undefined)undefined undefined undefined undefined-undefined
[40]  
Lu Y-Y(undefined)undefined undefined undefined undefined-undefined