Symmetry and nonexistence of positive solutions to an integral system with weighted functions

被引:0
|
作者
JingBo Dou
ChangZheng Qu
YaZhou Han
机构
[1] Northwest University,Center for Nonlinear Studies
[2] Xi’an University of Finance and Economics,School of Statistics
[3] China Jiliang University,Department of Mathematics, College of Science
来源
Science China Mathematics | 2011年 / 54卷
关键词
Hardy-Littlewood-Sobolev inequality; system of integral equations; symmetry; regularity; conformally invariant property; 45G15; 35J45; 35B65; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the system of integral equations with weighted functions in ℝn, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \left\{ \begin{gathered} u\left( x \right) = \int_{\mathbb{R}^n } {\left| {x - y} \right|^{\alpha - n} Q\left( y \right)v\left( y \right)^q dy,} \hfill \\ v\left( x \right) = \int_{\mathbb{R}^n } {\left| {x - y} \right|^{\alpha - n} K\left( y \right)u\left( y \right)^p dy,} \hfill \\ \end{gathered} \right. $$ \end{document} where 0 < α < n, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \frac{1} {{p + 1}} + \frac{1} {{q + 1}} \geqslant \frac{{n - \alpha }} {n},\frac{\alpha } {{n - \alpha }} $$ \end{document}, Q(x) and K(x) satisfy some suitable conditions. It is shown that every positive regular solution (u(x), v(x)) is symmetric about some plane by developing the moving plane method in an integral form. Moreover, regularity of the solution is studied. Finally, the nonexistence of positive solutions to the system in the case 0 < p,q < \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \frac{{n + \alpha }} {{n - \alpha }} $$ \end{document} is also discussed.
引用
收藏
页码:753 / 768
页数:15
相关论文
共 50 条
  • [21] Nonexistence of Positive Solutions for an Integral Equation Related to the Hardy-Sobolev Inequality
    Li, Dongyan
    Niu, Pengcheng
    Zhuo, Ran
    ACTA APPLICANDAE MATHEMATICAE, 2014, 134 (01) : 185 - 200
  • [22] Asymptotic behavior of positive solutions of a nonlinear integral system
    Zhao, Yilin
    Lei, Yutian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) : 1989 - 1999
  • [23] POSITIVE SOLUTIONS FOR A WEIGHTED FRACTIONAL SYSTEM
    Wang, Pengyan
    Wang, Yongzhong
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (03) : 935 - 949
  • [24] ON EXISTENCE AND NONEXISTENCE OF POSITIVE SOLUTIONS OF AN ELLIPTIC SYSTEM WITH COUPLED TERMS
    Li, Yayun
    Lei, Yutian
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (05) : 1749 - 1764
  • [25] Symmetry and Regularity of Solutions to the Weighted Hardy-Sobolev Type System
    Chen, Lu
    Liu, Zhao
    Lu, Guozhen
    ADVANCED NONLINEAR STUDIES, 2016, 16 (01) : 1 - 13
  • [26] THE PROPERTIES OF POSITIVE SOLUTIONS TO AN INTEGRAL SYSTEM INVOLVING WOLFF POTENTIAL
    Chen, Huan
    Lu, Zhongxue
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (05) : 1879 - 1904
  • [27] The radial symmetry of positive solutions for semilinear problems involving weighted fractional Laplacians
    Wang, Ying
    Qiu, Yanjing
    Yin, Qingping
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (03) : 1020 - 1035
  • [28] Radial symmetry and asymptotic behaviors of positive solutions for certain nonlinear integral equations
    Xu, Jiankai
    Wu, Huoxiong
    Tan, Zhong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 427 (01) : 307 - 319
  • [29] Integrability, regularity and symmetry of positive integrable solutions for Wolff type integral systems
    Zhang, Zexin
    Zhang, Zhitao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 357 : 275 - 301
  • [30] Classification of positive solutions for an integral system on the half space
    Hu, Yunyun
    Liu, Zhao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 199