Cluster realization of Weyl groups and q-characters of quantum affine algebras

被引:0
作者
Rei Inoue
机构
[1] Chiba University,Department of Mathematics and Informatics, Faculty of Science
来源
Letters in Mathematical Physics | 2021年 / 111卷
关键词
Cluster algebras; Weyl group; -character; Toda field; 13F60; 17B22; 20G42;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an infinite quiver Q(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q({\mathfrak {g}})$$\end{document} and a family of periodic quivers Qm(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_m({\mathfrak {g}})$$\end{document} for a finite-dimensional simple Lie algebra g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {g}}$$\end{document} and m∈Z>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \in {\mathbb Z}_{>1}$$\end{document}. The quiver Q(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q({\mathfrak {g}})$$\end{document} is essentially same as what introduced in Hernandez and Leclerc (J Eur Math Soc 18:1113–1159, 2016) for the quantum affine algebra g^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{{\mathfrak {g}}}}$$\end{document}. We construct the Weyl group W(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W({\mathfrak {g}})$$\end{document} as a subgroup of the cluster modular group for Qm(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_m({\mathfrak {g}})$$\end{document}, in a similar way as (Inoue et al. in Cluster realizations of Weyl groups and higher Teichmüller theory. arXiv:1902.02716), and study its applications to the q-characters of quantum non-twisted affine algebras Uq(g^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q({\hat{{\mathfrak {g}}}})$$\end{document} (Frenkel and Reshetikhin in Contemp Math 248:163–205, 1999), and to the lattice g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {g}}$$\end{document}-Toda field theory (Inoue and Hikami in Nucl Phys B 581:761–775, 2000). In particular, when q is a root of unity, we prove that the q-character is invariant under the Weyl group action. We also show that the A-variables for Q(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q({\mathfrak {g}})$$\end{document} correspond to the τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-function for the lattice g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {g}}$$\end{document}-Toda field equation.
引用
收藏
相关论文
共 53 条
  • [1] Bucher E(2016)Maximal green sequences for cluster algebras associated to orientable surfaces with empty boundary Arnold Math. J. 2 487-510
  • [2] Chari C(2005)Characters and blocks for finite-dimensional representations of quantum affine algebras Int. Math. Res. Not. 5 257-298
  • [3] Moura AA(2006)Moduli spaces of local systems and higher Teichmüller theory Publ. Math. Inst. Hautes Études Sci. No. 103 1-211
  • [4] Fock VV(2001)Combinatorics of Commun. Math. Phys. 216 23-57
  • [5] Goncharov AB(2002)-characters of finite-dimensional representations of quantum affine algebras Adv. Math. 171 139-167
  • [6] Frenkel E(1998)The Commun. Math. Phys. 197 1-32
  • [7] Mukhin E(1999)-characters at root of unity Contemp. Math. 248 163-205
  • [8] Frenkel E(2002)Deformations of Adv. Appl. Math. 28 119-144
  • [9] Mukhin E(2002)-algebras associated to simple Lie algebras J. Am. Math. Soc. 15 497-529
  • [10] Frenkel E(2003)The Ann. Math. 158 977-1018