Convex Four-Body Central Configurations with Some Equal Masses

被引:0
作者
Ernesto Perez-Chavela
Manuele Santoprete
机构
[1] UAM–Iztapalapa,Departamento de Matemáticas
[2] Wilfrid Laurier University,Department of Mathematics
来源
Archive for Rational Mechanics and Analysis | 2007年 / 185卷
关键词
Relative Equilibrium; Body Problem; Equal Mass; Symmetry Line; Central Configuration;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that there is an unique convex noncollinear central configuration of the planar Newtonian four-body problem when two equal masses are located at opposite vertices of a quadrilateral and, at most, only one of the remaining masses is larger than the equal masses. Such a central configuration possesses a symmetry line and it is a kite-shaped quadrilateral. We also show that there is exactly one convex noncollinear central configuration when the opposite masses are equal. Such a central configuration also possesses a symmetry line and it is a rhombus.
引用
收藏
页码:481 / 494
页数:13
相关论文
共 15 条
[1]  
Albouy A.(1995)Symétrie des configurations centrales de quatre corps C.R. Acad. Sci Paris. 320 217-220
[2]  
Albouy A.(1996)The Symmetric Central Configurations of Four Equal Masses Contemp Math. V 198 131-135
[3]  
Albouy A.(2003)On a Paper of Moeckel on Central Configurations Reg. Chaotic Dynamics. 8 133-142
[4]  
Albouy A.(1988)Le probléme des Invent. Mat. 131 151-184
[5]  
Chenciner A.(1918) corps et les distances mutuells Bull. Astron. 35 321-389
[6]  
Chazy J.(2006)Sur Certaines trajectoires du probléme des n corps Invent.math. 163 289-312
[7]  
Hampton M.(2003)Finiteness of Relative Equilibria of the Four-Body Problem Arch. Rational Mech Anal. 167 147-177
[8]  
Moeckel R.(2002)Finitness and Bifurcations of some Symmetrical Classes of Central Configurations Arch. Rational Mech Anal. 162 24-44
[9]  
Leandro E.S.G.(1910)Four-Body Central Configurations with some Equal Masses Ann. Math. 12 1-17
[10]  
Long Y.(1970)The Straight Line Solutions of the Problem of Inv. Math. 11 45-64