Non-Relativistic Twistor Theory and Newton–Cartan Geometry

被引:0
|
作者
Maciej Dunajski
James Gundry
机构
[1] University of Cambridge,Department of Applied Mathematics and Theoretical Physics
来源
Communications in Mathematical Physics | 2016年 / 342卷
关键词
Vector Bundle; Line Bundle; Minkowski Space; Normal Bundle; Holomorphic Vector Bundle;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a non–relativistic twistor theory, in which Newton–Cartan structures of Newtonian gravity correspond to complex three–manifolds with a four–parameter family of rational curves with normal bundle O⊕O(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O} \oplus \mathcal {O}(2)}$$\end{document}. We show that the Newton–Cartan space-times are unstable under the general Kodaira deformation of the twistor complex structure. The Newton–Cartan connections can nevertheless be reconstructed from Merkulov’s generalisation of the Kodaira map augmented by a choice of a holomorphic line bundle over the twistor space trivial on twistor lines. The Coriolis force may be incorporated by holomorphic vector bundles, which in general are non–trivial on twistor lines. The resulting geometries agree with non–relativistic limits of anti-self-dual gravitational instantons.
引用
收藏
页码:1043 / 1074
页数:31
相关论文
empty
未找到相关数据