Four families of minimal binary linear codes with wmin/wmax≤1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{\min }/w_{\max }\le 1/2$$\end{document}

被引:0
作者
Wenqin Zhang
Haode Yan
Honglei Wei
机构
[1] Southwest Jiaotong University,School of Mathematics
[2] State Key Laboratory of Cryptology,School of Economics and Management, National
[3] Southwest Jiaotong University,Local Joint Engineering Laboratory of System Credibility Automatic Verification
关键词
Linear codes; Binary codes; Minimal codes; Secret sharing; 05B05; 51E10; 94B15;
D O I
10.1007/s00200-018-0367-x
中图分类号
学科分类号
摘要
As a special type of linear codes, minimal linear codes have important applications in secret sharing. Up to now, only a few infinite families of minimal binary linear codes with wmin/wmax≤1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{\min }/w_{\max }\le 1/2$$\end{document} were reported in the literature, while vast knowledge exists on the ones with wmin/wmax>1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{\min }/w_{\max }> 1/2$$\end{document}. Herein, wmin\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{\min }$$\end{document} and wmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{\max }$$\end{document} respectively denote the minimum and maximum nonzero Hamming weights in a linear code. Recently, several classes of linear codes with certain properties were constructed by Zhou et al. from a generic construction. The objective of this paper is to obtain four families of minimal binary linear codes with wmin/wmax≤1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{\min }/w_{\max }\le 1/2$$\end{document} from those linear codes proposed by Zhou et al. The parameters of our minimal linear codes are quite different from known ones. Based on the properties of Krawtchouk polynomials, the weight distributions of all these four families of binary linear codes are established.
引用
收藏
页码:175 / 184
页数:9
相关论文
共 25 条
  • [1] Ashikhmin A(1998)Minimal vectors in linear codes IEEE Trans. Inf. Theory 44 2010-2017
  • [2] Barg A(2017)Linear codes from simplicial complexes Des. Codes Cryptogr. 60 3265-3275
  • [3] Chang S(2015)Linear codes from some 2-designs IEEE Trans. Inf. Theory 339 2288-2303
  • [4] Hyun JY(2016)A construction of binary linear codes from Boolean functions Discrete Math. 330 81-99
  • [5] Ding C(2018)Minimal binary linear codes IEEE Trans. Inf. Theory. 339 415-427
  • [6] Ding C(2005)A coding theory construction of new systematic authentication codes Theor. Comput. Sci. 52 206-212
  • [7] Ding C(2016)Three-weight cyclic codes and their weight distributions Discrete Math. 81 283-295
  • [8] Heng Z(2006)Secret sharing schemes from three classes of linear codes IEEE Trans. Inf. Theory undefined undefined-undefined
  • [9] Zhou Z(2018)Binary LCD codes and self-orthogonal codes from a generic construction IEEE Trans. Inf. Theory undefined undefined-undefined
  • [10] Ding C(2016)Linear codes with two or three weights from quadratic bent functions Des. Codes Cryptogr. undefined undefined-undefined