The spectrum of marginally-deformed N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 CFTs with AdS4 S-fold duals of type IIB

被引:0
作者
Mattia Cesàro
Gabriel Larios
Oscar Varela
机构
[1] Universidad Autónoma de Madrid,Departamento de Física Teórica and Instituto de Física Teórica UAM/CSIC
[2] Department of Applied Science and Technology,Leinweber Center for Theoretical Physics
[3] Politecnico di Torino,Department of Physics
[4] University of Michigan,undefined
[5] Utah State University,undefined
关键词
AdS-CFT Correspondence; Extended Supersymmetry; String Duality; Supergravity Models;
D O I
10.1007/JHEP12(2021)214
中图分类号
学科分类号
摘要
A holographic duality was recently established between an N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 non-geometric AdS4 solution of type IIB supergravity in the so-called S-fold class, and a three- dimensional conformal field theory (CFT) defined as a limit of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super-Yang-Mills at an interface. Using gauged supergravity, the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 conformal manifold (CM) of this CFT has been assessed to be two-dimensional. Here, we holographically characterise the large-N operator spectrum of the marginally-deformed CFT. We do this by, firstly, providing the algebraic structure of the complete Kaluza-Klein (KK) spectrum on the associated two-parameter family of AdS4 solutions. And, secondly, by computing the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 super-multiplet dimensions at the first few KK levels on a lattice in the CM, using new exceptional field theory techniques. Our KK analysis also allows us to establish that, at least at large N, this N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 CM is topologically a non-compact cylindrical Riemann surface bounded on only one side.
引用
收藏
相关论文
共 81 条
[1]  
Godazgar H(2014) AdS JHEP 09 044-undefined
[2]  
Godazgar M(2020) × JHEP 08 159-undefined
[3]  
Hohm O(2021) × JHEP 04 283-undefined
[4]  
Nicolai H(2021) = 6 SciPost Phys. 10 131-undefined
[5]  
Samtleben H(2021)2 JHEP 04 208-undefined
[6]  
Malek E(2021) 3 JHEP 06 111-undefined
[7]  
Nicolai H(2021) = 4 JHEP 07 094-undefined
[8]  
Samtleben H(2008) = 3 JHEP 10 091-undefined
[9]  
Varela O(2018) = 4 JHEP 06 019-undefined
[10]  
Eloy C(2010) = 3 JHEP 06 097-undefined