Three new exact solutions for charged fluid spheres in general relativity

被引:0
作者
S. K. Maurya
Y. K. Gupta
Baiju Dayanandan
T. T. Smitha
机构
[1] University of Nizwa,Department of Mathematical & Physical Sciences, College of Arts & Science
[2] Technology University,Department of Mathematics Jaypee Institute of Information
来源
Astrophysics and Space Science | 2015年 / 356卷
关键词
Canonical coordinates; Charged fluids; Super-dense star; General relativity;
D O I
暂无
中图分类号
学科分类号
摘要
In the present article three new exact solutions of Einstein’s field equations for charged fluid spheres are derived as per Ivanov’s classification (ν,q). Where ‘ν’ stands for ‘logg44’ and q represents total charge inside the sphere of radius r. The solutions are obtained by considering ν=nlogB1/n(1+br2) with b<0, B>0 and assuming suitable charged function ‘q’. The solutions so obtained are utilized to construct the super dense star models with surface density ρa=2×1014 g cm−3 and possessing the maximum mass M and the corresponding radius a as: (i) n=−1, M=3.9678MΘ, a=22.9698 km, (ii) n=−2, M=4.9489MΘ, a=18.332 km, (iii) n=−3, M=0.9643MΘ, a=3.1698 km. The red shift, adiabatic index, variation of velocity of light throughout the stars have been studied carefully and kept the every entity within the physical range.
引用
收藏
页码:75 / 87
页数:12
相关论文
共 97 条
[1]  
Adler R.J.(1974)Relativistic charged spheres J. Math. Phys. 15 727-L19
[2]  
Bonnor W.B.(1960)Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein’s equations Z. Phys. 160 59-415
[3]  
Bijalwan N.(2011)undefined Astrophys. Space Sci. 277 L17-162
[4]  
de Felice F.(1995)undefined Mon. Not. R. Astron. Soc. 12 2033-310
[5]  
Yu Y.(1975)undefined Phys. Rev. C 115 395-154
[6]  
Fang J.(1998)undefined Comput. Phys. Commun. 85 331-1300
[7]  
Canuto V.(1982)undefined Astrophys. Space Sci. 15 2637-1805
[8]  
Lodenquai J.(1982)undefined J. Phys. A 31 1860-3489
[9]  
Delgaty M.S.R.(1985)undefined Phys. Rev. D 31 2129-685
[10]  
Lake K.(1985)undefined Phys. Rev. D 228 489-953