On the intersections of the Besicovitch sets and the Erdös–Rényi sets

被引:0
作者
Mengjie Zhang
Li Peng
机构
[1] Huazhong University of Science and Technology,School of Mathematics and Statistics
来源
Monatshefte für Mathematik | 2019年 / 189卷
关键词
Hausdorff dimension; Besicovitch sets; Erdös–Rényi sets; Run-length function; 11K55; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
We are interested in two properties of real numbers: the first one is the property of having given digit frequencies in the binary expansion, such as the well known Besicovitch sets, and the second one is the property of having the longest run of heads in the n independent Bernoulli trials, that is the so called Erdös–Rényi sets. In 2013, Chen and Wen (J Math Anal Appl 401:29–37, 2013) considered the intersections of these two kinds of sets by determining the Hausdorff dimension of the sets x∈[0,1):lim infn→∞Sn(x)n≥α,limn→∞Rn(x)log2n=β,0≤α≤1,0≤β≤+∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ x\in [0,1):~\liminf \limits _{n\rightarrow \infty }\frac{S_{n}(x)}{n}\ge \alpha ,~ \lim \limits _{n\rightarrow \infty }\frac{R_{n}(x)}{\log _{2}n}=\beta \right\} ,~~0\le \alpha \le 1,~0\le \beta \le +\,\infty , \end{aligned}$$\end{document}where Sn(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{n}(x)$$\end{document} denotes the summation of the first n digits and Rn(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{n}(x)$$\end{document} is the maximal length of consecutive one digits in the first n terms of the dyadic expansion of x∈[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in [0,1)$$\end{document}. In the present paper, we complement this result by computing the Hausdorff dimension of the following sets x∈[0,1):limn→∞Sn(x)n=α,limn→∞Rn(x)log2n=β,0≤α≤1,0≤β≤+∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ x\in [0,1):~\lim \limits _{n\rightarrow \infty }\frac{S_{n}(x)}{n}=\alpha ,~\lim \limits _{n\rightarrow \infty }\frac{R_{n}(x)}{\log _{2}n}=\beta \right\} , ~~0\le \alpha \le 1,~0\le \beta \le +\,\infty . \end{aligned}$$\end{document}
引用
收藏
页码:179 / 189
页数:10
相关论文
共 28 条
  • [1] Borel E(1909)Les probabilités dénomebrabels et leurs applications arithmétiques Rend. Circ. Mat. Palermo 27 247-271
  • [2] Besicovitch A(1934)On the sum of digits of real numbers represented in the dyadic system Math. Ann. 110 321-330
  • [3] Eggleston HG(1949)The fractional dimension of a set defined by decimal properties Q. J. Math. Oxf. Ser. 20 31-36
  • [4] Barreira L(2002)Distribution of sequences of digits via multifractal analysis J. Number Theory 97 410-438
  • [5] Saussol B(1970)On a new law of the longest head run J. Anal. Math. 22 103-111
  • [6] Schmeling J(2013)The fractional dimensions of intersections of Besicovitch sets and the Erdös–Rényi sets J. Math. Anal. Appl. 401 29-37
  • [7] Erdös P(2001)Recurrence, dimension and entropy J. London Math. Soc. (2) 64 229-244
  • [8] Rényi A(2002)Ergodic limits on the conformal repellers Adv. Math. 169 58-91
  • [9] Chen HB(1997)Some dimensional results for homogeneous Moran sets Sci. China Ser. A 40 172-178
  • [10] Wen ZX(2007)Egoroff’s theorem and maximal run-length Monatsh. Math. 151 287-292