On some quadratic APN functions

被引:0
|
作者
Hiroaki Taniguchi
机构
[1] National Institute of Technology,
[2] Kagawa College,undefined
来源
Designs, Codes and Cryptography | 2019年 / 87卷
关键词
APN function; Semifield; Projective polynomial; 11T71; 06E30; 12K10; 51A35;
D O I
暂无
中图分类号
学科分类号
摘要
A construction of APN functions using the bent function B(x,y)=xy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B(x,y)=xy$$\end{document} is proposed in Carlet (Des Codes Cryptogr 59:89–109, 2011). At this time, two families of APN functions using this construction are known, that is, the family of Carlet (2011) and the family of Zhou and Pott (Adv Math 234:43–60, 2013). In this note, we propose another family of APN functions with this construction, which are not CCZ equivalent to the former two families on F28\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {F}}}_{2^8}$$\end{document}. We also propose a family of presemifields and determined the middle, left, right nuclei and the center of the associated semifields.
引用
收藏
页码:1973 / 1983
页数:10
相关论文
共 50 条
  • [1] On some quadratic APN functions
    Taniguchi, Hiroaki
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (09) : 1973 - 1983
  • [2] Some Results on the Known Classes of Quadratic APN Functions
    Budaghyan, Lilya
    Helleseth, Tor
    Li, Nian
    Sun, Bo
    CODES, CRYPTOLOGY AND INFORMATION SECURITY, C2SI 2017, 2017, 10194 : 3 - 16
  • [3] THE LINEAR SPECTRUM OF QUADRATIC APN FUNCTIONS
    Gorodilova, A. A.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2016, 34 (04): : 5 - 16
  • [4] The classification of quadratic APN functions in 7 variables and combinatorial approaches to search for APN functions
    Konstantin Kalgin
    Valeriya Idrisova
    Cryptography and Communications, 2023, 15 : 239 - 256
  • [5] The classification of quadratic APN functions in 7 variables and combinatorial approaches to search for APN functions
    Kalgin, Konstantin
    Idrisova, Valeriya
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 15 (02): : 239 - 256
  • [6] Two New Families of Quadratic APN Functions
    Li, Kangquan
    Zhou, Yue
    Li, Chunlei
    Qu, Longjiang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (07) : 4761 - 4769
  • [7] Construction of CCZ transform for quadratic APN functions
    Zhang, Xinyang
    Zhou, Meng
    COGNITIVE SYSTEMS RESEARCH, 2019, 57 : 41 - 45
  • [8] ON THE FOURIER SPECTRA OF THE INFINITE FAMILIES OF QUADRATIC APN FUNCTIONS
    Bracken, Carl
    Zha, Zhengbang
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2009, 3 (03) : 219 - 226
  • [9] On the Walsh spectrum of a family of quadratic APN functions with five terms
    QU LongJiang
    TAN Yin
    LI Chao
    ScienceChina(InformationSciences), 2014, 57 (02) : 271 - 277
  • [10] On the Walsh spectrum of a family of quadratic APN functions with five terms
    Qu LongJiang
    Tan Yin
    Li Chao
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (02) : 1 - 7