Enhanced X-ray emission arising from laser-plasma confinement by a strong transverse magnetic field

被引:0
作者
Evgeny D. Filippov
Sergey S. Makarov
Konstantin F. Burdonov
Weipeng Yao
Guilhem Revet
Jerome Béard
Simon Bolaños
Sophia N. Chen
Amira Guediche
Jack Hare
Denis Romanovsky
Igor Yu. Skobelev
Mikhail Starodubtsev
Andrea Ciardi
Sergey A. Pikuz
Julien Fuchs
机构
[1] Institute of Applied Physics,Department of Physics
[2] RAS,LULI
[3] Joint Institute for High Temperatures, CNRS, CEA, UPMC Univ Paris 06 : Sorbonne Université, Ecole Polytechnique
[4] RAS,Sorbonne Université, Observatoire de Paris
[5] Lomonosov Moscow State University,undefined
[6] Institut Polytechnique de Paris,undefined
[7] PSL Research University,undefined
[8] LERMA,undefined
[9] CNRS UMR 8112,undefined
[10] LNCMI,undefined
[11] UPR 3228,undefined
[12] CNRS-UGA-UPS-INSA,undefined
[13] ELI-NP,undefined
[14] “Horia Hulubei” National Institute for Physics and Nuclear Engineering,undefined
[15] Imperial College,undefined
[16] National Research Nuclear University “MEPhI”,undefined
来源
Scientific Reports | / 11卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We analyze, using experiments and 3D MHD numerical simulations, the dynamic and radiative properties of a plasma ablated by a laser (1 ns, 1012\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{12}$$\end{document}–1013\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{13}$$\end{document} W/cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document}) from a solid target as it expands into a homogeneous, strong magnetic field (up to 30 T) that is transverse to its main expansion axis. We find that as early as 2 ns after the start of the expansion, the plasma becomes constrained by the magnetic field. As the magnetic field strength is increased, more plasma is confined close to the target and is heated by magnetic compression. We also observe that after ∼8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 8$$\end{document} ns, the plasma is being overall shaped in a slab, with the plasma being compressed perpendicularly to the magnetic field, and being extended along the magnetic field direction. This dense slab rapidly expands into vacuum; however, it contains only ∼2%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 2\%$$\end{document} of the total plasma. As a result of the higher density and increased heating of the plasma confined against the laser-irradiated solid target, there is a net enhancement of the total X-ray emissivity induced by the magnetization.
引用
收藏
相关论文
共 148 条
[1]  
Tikhonchuk VT(2017)Quasistationary magnetic field generation with a laser-driven capacitor-coil assembly Phys. Rev. E 96 023202-328
[2]  
Bailly-Grandvaux M(2013)Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields Rev. Sci. Instrum. 84 043505-576
[3]  
Santos JJ(2018)Inductively coupled 30 T magnetic field platform for magnetized high-energy-density plasma studies Rev. Sci. Instrum. 89 084703-37
[4]  
Poyé A(2010)Structure of an exploding laser-produced plasma Phys. Rev. Lett. 105 195003-B163
[5]  
Albertazzi B(2014)Magnetic reconnection between colliding magnetized laser-produced plasma plumes Phys. Rev. Lett. 113 105003-236
[6]  
Fiksel G(2017)Laboratory unraveling of matter accretion in young stars Sci. Adv. 3 e170092-1801
[7]  
Collette A(2019)Laboratory investigation of particle acceleration and magnetic field compression in collisionless colliding fast plasma flows Commun. Phys. 2 60-2048
[8]  
Gekelman W(2014)Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field Science 346 325-59
[9]  
Fiksel G(2017)Collisionless momentum transfer in space and astrophysical explosions Nat. Phys. 13 573-9
[10]  
Revet G(2015)Modeling the interaction of solar wind with a dipole magnetic field with Shenguang II intense lasers High Energy Density Phys. 17 32-338