On the maximum of the magnitude of the electrophoretic mobility of a spherical colloidal particle in an electrolyte solution

被引:0
作者
Hiroyuki Ohshima
机构
[1] Tokyo University of Science,Faculty of Pharmaceutical Sciences
来源
Colloid and Polymer Science | 2016年 / 294卷
关键词
Electrophoretic mobility; Zeta potential; Relaxation effect; Mobility maximum; Spherical particle; Cylindrical particle;
D O I
暂无
中图分类号
学科分类号
摘要
The magnitude of the electrophoretic mobility μ of a spherical colloidal particle in an electrolyte solution with κa > 3 (κ = the Debye-Hückel parameter of the electrolyte solution and a = particle radius), when plotted as a function of the particle zeta potential ζ, exhibits a maximum μmax at ζ = ζmax. Analytic expressions applicable for large κa (κa ≥ 30) are derived for μmax and ζmax for a spherical particle in a symmetrical electrolyte solution. Analytic expressions for μmax and ζmax are also derived for a spherical particle in a 2:1 or 1:2 electrolyte solution. Finally, it is to be noted that μmax and ζmax for a cylindrical particle of radius a when the particle is oriented perpendicular to the applied electric field are the same as those for a spherical particle of radius a for large κa (κa ≥ 30).
引用
收藏
页码:13 / 17
页数:4
相关论文
共 28 条
[1]  
Hückel E(1924)Die kataphorese der kugel Phys Z 25 204-210
[2]  
Henry DC(1931)The cataphoresis of suspended particles. Part I. The equation of cataphoreis Proc Roy Soc London Ser A 133 106-129
[3]  
Overbeek JTG(1943)Theorie der Elektrophorese Kolloid Beih 54 287-364
[4]  
Booth F(1950)The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte Proc R Soc London Ser A 203 514-533
[5]  
Dukhin SS(1970)Theory of double layer polarization and its influence on the electrokinetic and electrooptical phenomena and the dielectric permeability of disperse systems. Calculation of the electrophoretic and diffusiophoretic mobility of solid spherical particles Kolloidn Zh 32 360-368
[6]  
Semenikhin NM(1978)Electrophoretic mobility of a spherical colloidal particle J Chem Soc Faraday Trans 2 74 1607-1626
[7]  
O'Brien RW(1981)The electrophoretic mobility of large colloidal particles Can J Chem 59 1878-1887
[8]  
White LR(1983)Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions J Chem Soc Faraday Trans 2 79 1613-1628
[9]  
O'Brien RW(1983)The solution of the electrokinetic equations for colloidal particles with thin double layers J Colloid Interface Sci 92 204-216
[10]  
Hunter RJ(1993)Non-equilibrium electric surface phenomena Adv Colloid Interface Sci 44 1-134