Torsion Pairs and Rigid Objects in Tubes

被引:0
作者
Karin Baur
Aslak Bakke Buan
Bethany R. Marsh
机构
[1] Universität Graz,Institut für Mathematik und wissenschaftliches Rechnen
[2] Norwegian University of Science and Technology,Department of Mathematical Sciences
[3] University of Leeds,School of Mathematics
来源
Algebras and Representation Theory | 2014年 / 17卷
关键词
Tube category; Torsion pair; Torsion theory; Pruefer module; Adic module; Annulus; Maximal rigid object; Arc model; Direct limit; Inverse limit; Primary 16G10; 16G70; 55N45; Secondary 13F60; 16G20;
D O I
暂无
中图分类号
学科分类号
摘要
We classify the torsion pairs in a tube category and show that they are in bijection with maximal rigid objects in the extension of the tube category containing the Prüfer and adic modules. We show that the annulus geometric model for the tube category can be extended to the larger category and interpret torsion pairs, maximal rigid objects and the bijection between them geometrically. We also give a similar geometric description in the case of the linear orientation of a Dynkin quiver of type A.
引用
收藏
页码:565 / 591
页数:26
相关论文
共 30 条
  • [1] Torsion Pairs and Rigid Objects in Tubes
    Baur, Karin
    Buan, Aslak Bakke
    Marsh, Robert J.
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (02) : 565 - 591
  • [2] Torsion pairs in finite 2-Calabi-Yau triangulated categories with maximal rigid objects
    Chang, Huimin
    Zhu, Bin
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (07) : 2810 - 2832
  • [3] Torsion pairs and filtrations in abelian categories with tilting objects
    Lo, Jason
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (08)
  • [4] ENDOMORPHISM ALGEBRAS OF MAXIMAL RIGID OBJECTS IN CLUSTER TUBES
    Yang, Dong
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (12) : 4347 - 4371
  • [5] Decomposition of torsion pairs on module categories
    Kong, Fan
    Song, Keyan
    Zhang, Pu
    JOURNAL OF ALGEBRA, 2013, 388 : 248 - 267
  • [6] Stability approach to torsion pairs on abelian categories
    Chen, Mingfa
    Lin, Yanan
    Ruan, Shiquan
    JOURNAL OF ALGEBRA, 2023, 636 : 560 - 602
  • [7] TORSION PAIRS IN STABLE CATEGORIES
    Zhou, Panyue
    Xu, Jinde
    Ouyang, Baiyu
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (08) : 3498 - 3514
  • [8] TORSION PAIRS IN SILTING THEORY
    Huegel, Lidia Angeleri
    Marks, Frederik
    Vitoria, Jorge
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 291 (02) : 257 - 278
  • [9] Torsion pairs and cosilting in type A
    Baur, Karin
    Laking, Rosanna
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (10)
  • [10] Wide coreflective subcategories and torsion pairs
    Hugel, Lidia Angeleri
    Sentieri, Francesco
    JOURNAL OF ALGEBRA, 2025, 664 : 164 - 205