Controllability of Impulsive Fractional Integro-Differential Evolution Equations

被引:0
作者
Haide Gou
Yongxiang Li
机构
[1] Northwest Normal University,Department of Mathematics
来源
Acta Applicandae Mathematicae | 2021年 / 175卷
关键词
Fractional evolution equation; Controllability; Measure of noncompactness; -resolvent family; Fixed point theorem; 26A33; 34K30; 34K35; 35R11; 93B05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are concerned with the controllability for a class of impulsive fractional integro-differential evolution equation in a Banach space. Sufficient conditions of the existence of mild solutions and approximate controllability for the concern problem are presented by considering the term u′(⋅)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u'(\cdot )$\end{document} and finding a control v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$v$\end{document} such that the mild solution satisfies u(b)=ub\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u(b)=u_{b}$\end{document} and u′(b)=ub′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u'(b)=u'_{b}$\end{document}. The discussions are based on Mönch fixed point theorem as well as the theory of fractional calculus and (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\alpha ,\beta )$\end{document}-resolvent operator. Finally, an example is given to illustrate the feasibility of our results.
引用
收藏
相关论文
共 93 条
[1]  
Shu X.B.(2014)Upper and lower solution method for fractional evolution equations with order J. Korean Math. Soc. 51 1123-1139
[2]  
Xu F.(2005)Positive solutions for boundary value problem of nonlinear fractional differential equation J. Math. Anal. Appl. 311 495-505
[3]  
Bai Z.(2017)Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators Fract. Calc. Appl. Anal. 20 963-987
[4]  
Lü H.(2017)Local and global existence of mild solutions for a class of semilinear fractional integro-differential equations Fract. Calc. Appl. Anal. 20 1338-1355
[5]  
Chang Y.K.(2005)Fractional differential equations and the Schrodinger equation Appl. Math. Comput. 161 323-345
[6]  
Pereira A.(2008)Existence results for differential equations with fractional order and impulses Mem. Differ. Equ. Math. Phys. 44 1-21
[7]  
Ponce R.(1998)Semilinear integro-differential equations with compact semigroup J. Appl. Math. Stoch. Anal. 11 507-517
[8]  
Zhu B.(2010)On the solution set for a class of sequential fractional differential equations J. Phys. A, Math. Theor. 43 1129-1132
[9]  
Liu L.(2010)An existence result for a superlinear fractional differential equation Appl. Math. Lett. 23 201-233
[10]  
Wu Y.(1988)A semilinear parabolic Volterra integro-differential equation J. Differ. Equ. 71 2100-2110