Exterior Minimum-Penalty Path-Following Methods in Semidefinite Programming

被引:0
作者
M. K. H. Fan
Y. Gong
机构
[1] Georgia Institute of Technology,School of Electrical and Computer Engineering
[2] Georgia Institute of Technology,School of Electrical and Computer Engineering
来源
Journal of Optimization Theory and Applications | 1999年 / 100卷
关键词
Convex programming; semidefinite programming; linear matrix inequalities; linear programming; constraint-aggregation method; minimum-penalty path; exterior path-following methods;
D O I
暂无
中图分类号
学科分类号
摘要
A semidefinite programming problem is a mathematical program in which the objective function is linear in the unknowns and the constraint set is defined by a linear matrix inequality. This problem is nonlinear, nondifferentiable but convex. It covers several standard problems, such as linear and quadratic programming, and has many applications in engineering. In this paper, we introduce the notion of minimal-penalty path, which is defined as the collection of minimizers for a family of convex optimization problems, and propose two methods for solving the problem by following the minimal-penalty path from the exterior of the feasible set. Our first method, which is also a constraint-aggregation method, achieves the solution by solving a sequence of linear programs, but exhibits a zigzagging behavior around the minimal-penalty path. Our second method eliminates the above drawback by following efficiently the minimum-penalty path through the centering and ascending steps. The global convergence of the methods is proved and their performance is illustrated by means of an example.
引用
收藏
页码:327 / 348
页数:21
相关论文
共 2 条
[1]  
Tsing N. K.(1994)On Analyticity of Functions Involving Eigenvalues Linear Algebra and Its Applications 207 159-180
[2]  
Fan K. H. I.(undefined)undefined undefined undefined undefined-undefined