A Maschke type theorem for relative Hom-Hopf modules

被引:0
作者
Shuangjian Guo
Xiu-Li Chen
机构
[1] Guizhou University of Finance and Economics in Huaxi University Town,School of Mathematics and Statistics
[2] Southeast University,Department of Mathematics
来源
Czechoslovak Mathematical Journal | 2014年 / 64卷
关键词
monoidal Hom-Hopf algebra; separable functors; Maschke type theorem; total integral; relative Hom-Hopf module; 16T05;
D O I
暂无
中图分类号
学科分类号
摘要
Let (H, α) be a monoidal Hom-Hopf algebra and (A, β) a right (H, α)-Homcomodule algebra. We first introduce the notion of a relative Hom-Hopf module and prove that the functor F from the category of relative Hom-Hopf modules to the category of right (A, β)-Hom-modules has a right adjoint. Furthermore, we prove a Maschke type theorem for the category of relative Hom-Hopf modules. In fact, we give necessary and sufficient conditions for the functor that forgets the (H, α)-coaction to be separable. This leads to a generalized notion of integrals.
引用
收藏
页码:783 / 799
页数:16
相关论文
共 17 条
[1]  
Caenepeel S.(2011)Monoidal Hom-Hopf algebras Commun. Algebra 39 2216-2240
[2]  
Goyvaerts I.(1999)Separable functors for the category of Doi-Hopf modules, applications Adv. Math. 145 239-290
[3]  
Caenepeel S.(1990)Hopf extensions of algebras and Maschke type theorems Isr. J. Math. 72 99-108
[4]  
Militaru G.(1985)Algebras with total integrals Commun. Algebra 13 2137-2159
[5]  
Ion B.(1983)On the structure of relative Hopf modules Commun. Algebra 11 243-255
[6]  
Zhu S.(2006)Deformations of Lie algebras using J. Algebra 295 314-361
[7]  
Doi Y.(2010)-derivations J. Algebra Appl. 9 553-589
[8]  
Doi Y.(2008)Hom-algebras and Hom-coalgebras J. Gen. Lie Theory Appl. 2 51-64
[9]  
Doi Y.(1979)Hom-algebra structures J. Algebra 60 452-471
[10]  
Hartwig J. T.(undefined)Relative Hopf modules-equivalences and freeness criteria undefined undefined undefined-undefined