15.4% Efficiency all-polymer solar cells

被引:0
|
作者
Long Zhang
Tao Jia
Langheng Pan
Baoqi Wu
Zaiyu Wang
Ke Gao
Feng Liu
Chunhui Duan
Fei Huang
Yong Cao
机构
[1] South China University of Technology,Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials and Devices
[2] The Hong Kong University of Science and Technology,Department of Chemistry
[3] University of Washington,Department of Materials Science and Engineering
[4] Shanghai Jiao Tong University,Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering
[5] Dalian University of Technology,State Key Laboratory of Fine Chemicals
来源
Science China Chemistry | 2021年 / 64卷
关键词
all-polymer solar cells; molecular weight; morphology; device performance;
D O I
暂无
中图分类号
学科分类号
摘要
We report all-polymer solar cells (All-PSCs) with record-high power conversion efficiency (PCE) through tuning the molecular weights of the polymer donor (PBDB-T) to form optimal active layer morphology. By combining the polymer donors with a newly reported polymer acceptor (PJ1), an unprecedented high PCE of 15.4% and fill factor over 75% were achieved for the All-PSCs with the medium molecular weight polymer donor (PBDB-TMW), which is the highest value for All-PSCs reported so far. Detailed morphology investigation revealed that the proper phase separation in the PBDB-TMW:PJ1 blend should account for the superior device performance as PBDB-TMW exhibits appropriate miscibility with the polymer acceptor PJ1. These results demonstrated that the device performance of All-PSCs could be fully comparable to that of small molecular acceptor-based PSCs. The formation of optimized morphology via precise control of molecular weights of polymer donors and acceptors is crucial to achieve this goal. [graphic not available: see fulltext]
引用
收藏
页码:408 / 412
页数:4
相关论文
共 50 条
  • [1] 15.4% Efficiency all-polymer solar cells
    Long Zhang
    Tao Jia
    Langheng Pan
    Baoqi Wu
    Zaiyu Wang
    Ke Gao
    Feng Liu
    Chunhui Duan
    Fei Huang
    Yong Cao
    Science China(Chemistry), 2021, 64 (03) : 408 - 412
  • [2] 15.4% Efficiency all-polymer solar cells
    Long Zhang
    Tao Jia
    Langheng Pan
    Baoqi Wu
    Zaiyu Wang
    Ke Gao
    Feng Liu
    Chunhui Duan
    Fei Huang
    Yong Cao
    Science China(Chemistry), 2021, (03) : 408 - 412
  • [3] 15.4% Efficiency all-polymer solar cells
    Zhang, Long
    Jia, Tao
    Pan, Langheng
    Wu, Baoqi
    Wang, Zaiyu
    Gao, Ke
    Liu, Feng
    Duan, Chunhui
    Huang, Fei
    Cao, Yong
    SCIENCE CHINA-CHEMISTRY, 2021, 64 (03) : 408 - 412
  • [4] Organoboron Polymer for 10% Efficiency All-Polymer Solar Cells
    Zhao, Ruyan
    Wang, Ning
    Yu, Yingjian
    Liu, Jun
    CHEMISTRY OF MATERIALS, 2020, 32 (03) : 1308 - 1314
  • [5] High efficiency all-polymer tandem solar cells
    Yuan, Jianyu
    Gu, Jinan
    Shi, Guozheng
    Sun, Jianxia
    Wang, Hai-Qiao
    Ma, Wanli
    SCIENTIFIC REPORTS, 2016, 6
  • [6] High efficiency all-polymer tandem solar cells
    Jianyu Yuan
    Jinan Gu
    Guozheng Shi
    Jianxia Sun
    Hai-Qiao Wang
    Wanli Ma
    Scientific Reports, 6
  • [7] All-polymer solar cells
    Baoqi Wu
    Bingyan Yin
    Chunhui Duan
    Liming Ding
    Journal of Semiconductors, 2021, 42 (08) : 16 - 22
  • [8] All-polymer solar cells
    Bao, Zhenan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [9] Novel polymer acceptors achieving 10.18% efficiency for all-polymer solar cells
    Huang, Shaorong
    Wu, Feiyan
    Liu, Zuoji
    Cui, Yongjie
    Chen, Lie
    Chen, Yiwang
    JOURNAL OF ENERGY CHEMISTRY, 2021, 53 : 63 - 68
  • [10] Polymer acceptors for all-polymer solar cells
    Ji, Xiaofei
    Xiao, Zuo
    Sun, Huiliang
    Guo, Xugang
    Ding, Liming
    JOURNAL OF SEMICONDUCTORS, 2021, 42 (08)