The theory of the basic reproduction ratio R0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{0}$$\end{document} and its computation formulae for almost periodic compartmental epidemic models are established. It is shown that the disease-free almost periodic solution is stable if R0<1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{0}<1$$\end{document}, and unstable if R0>1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{0}>1$$\end{document}. We also apply the developed theory to a patchy model with almost periodic population dispersal and disease transmission coefficients to obtain a threshold type result for uniform persistence and global extinction of the disease.
机构:
Harbin Inst Technol Weihai, Dept Math, Weihai 264209, Shandong, Peoples R China
Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, CanadaHarbin Inst Technol Weihai, Dept Math, Weihai 264209, Shandong, Peoples R China
Zhang, Lei
Zhao, Xiao-Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, CanadaHarbin Inst Technol Weihai, Dept Math, Weihai 264209, Shandong, Peoples R China