Basic Reproduction Ratios for Almost Periodic Compartmental Epidemic Models

被引:0
作者
Bin-Guo Wang
Xiao-Qiang Zhao
机构
[1] Lanzhou University,School of Mathematics and Statistics
[2] Memorial University of Newfoundland,Department of Mathematics and Statistics
来源
Journal of Dynamics and Differential Equations | 2013年 / 25卷
关键词
Almost periodicity; Compartmental models; Reproduction ratio; Skew-product semiflow; Threshold dynamics; 34D20; 37B55; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
The theory of the basic reproduction ratio R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0}$$\end{document} and its computation formulae for almost periodic compartmental epidemic models are established. It is shown that the disease-free almost periodic solution is stable if R0<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0}<1$$\end{document}, and unstable if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0}>1$$\end{document}. We also apply the developed theory to a patchy model with almost periodic population dispersal and disease transmission coefficients to obtain a threshold type result for uniform persistence and global extinction of the disease.
引用
收藏
页码:535 / 562
页数:27
相关论文
共 33 条
  • [21] Analytic solutions to compartmental models of the HIV/AIDS epidemic
    Griffiths, J
    England, T
    Williams, J
    IMA JOURNAL OF MATHEMATICS APPLIED IN MEDICINE AND BIOLOGY, 2000, 17 (04): : 295 - 310
  • [22] Basic Reproduction Ratios for Periodic Abstract Functional Differential Equations (with Application to a Spatial Model for Lyme Disease)
    Xing Liang
    Lei Zhang
    Xiao-Qiang Zhao
    Journal of Dynamics and Differential Equations, 2019, 31 : 1247 - 1278
  • [23] Basic Reproduction Ratios for Periodic Abstract Functional Differential Equations (with Application to a Spatial Model for Lyme Disease)
    Liang, Xing
    Zhang, Lei
    Zhao, Xiao-Qiang
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (03) : 1247 - 1278
  • [24] A reaction-diffusion epidemic model with incubation period in almost periodic environments
    Qiang, Lizhong
    Wang, Bin-Guo
    Wang, Zhi-Cheng
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2021, 32 (06) : 1153 - 1176
  • [25] Population models in almost periodic environments
    Diagana, Toka
    Elaydi, Saber
    Yakubu, Abdul-Aziz
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2007, 13 (04) : 239 - 260
  • [26] SPATIAL DYNAMICS OF AN EPIDEMIC MODEL IN TIME ALMOST PERIODIC AND SPACE PERIODIC MEDIA
    Xin, Ming-Zhen
    Wang, Bin-Guo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (02): : 1159 - 1184
  • [27] GLOBAL DYNAMICS OF A REACTION-DIFFUSION SEIVQR EPIDEMIC MODEL IN ALMOST PERIODIC ENVIRONMENTS
    Xing, Yifan
    Li, Hong-Xu
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (02): : 762 - 785
  • [28] AN ALMOST PERIODIC EPIDEMIC MODEL WITH AGE STRUCTURE IN A PATCHY ENVIRONMENT
    Wang, Bin-Guo
    Li, Wan-Tong
    Zhang, Liang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (01): : 291 - 311
  • [29] Asymptotic behavior of the basic reproduction number for periodic nonlocal dispersal operators and applications
    Feng, Yan-Xia
    Li, Wan-Tong
    Lou, Yuan
    Yang, Fei-Ying
    JOURNAL OF MATHEMATICAL BIOLOGY, 2025, 90 (02)
  • [30] Time-varying reproduction number estimation: fusing compartmental models with generalized additive models
    Pang, Xiaoxi
    Han, Yang
    Tressier, Elise
    Aziz, Nurin Abdul
    Pellis, Lorenzo
    House, Thomas
    Hall, Ian
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2025, 22 (222)