Basic Reproduction Ratios for Almost Periodic Compartmental Epidemic Models

被引:0
作者
Bin-Guo Wang
Xiao-Qiang Zhao
机构
[1] Lanzhou University,School of Mathematics and Statistics
[2] Memorial University of Newfoundland,Department of Mathematics and Statistics
来源
Journal of Dynamics and Differential Equations | 2013年 / 25卷
关键词
Almost periodicity; Compartmental models; Reproduction ratio; Skew-product semiflow; Threshold dynamics; 34D20; 37B55; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
The theory of the basic reproduction ratio R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0}$$\end{document} and its computation formulae for almost periodic compartmental epidemic models are established. It is shown that the disease-free almost periodic solution is stable if R0<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0}<1$$\end{document}, and unstable if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0}>1$$\end{document}. We also apply the developed theory to a patchy model with almost periodic population dispersal and disease transmission coefficients to obtain a threshold type result for uniform persistence and global extinction of the disease.
引用
收藏
页码:535 / 562
页数:27
相关论文
共 33 条
[1]  
Altizer S(2006)Seasonality and the dynamics of infectious diseases Ecol. Lett. 9 467-484
[2]  
Dobson A(2006)The epidemic threshold of vector-borne diseases with seasonality J. Math. Biol. 53 421-436
[3]  
Hosseini P(2007)Approximation of the basic reproduction number Bull. Math. Biol. 69 1067-1091
[4]  
Hudson P(2012) for vector-borne diseases with a periodic vector population Appl. Math. Model. 36 1323-1337
[5]  
Pascual M(1990)Modeling pulse infectious events irrupting into a controlled context: a SIS disease with almost periodic parameters J. Math. Biol. 28 365-382
[6]  
Rohani P(1969)On the definition and the computation of the basic reproduction ratio SIAM J. Appl. Math. 17 1258-1262
[7]  
Bacaër N(2000) in the models for infectious disease in heterogeneous populations SIAM Rev 42 599-653
[8]  
Guernaoui S(2000)Compact families of almost periodic functions and an application of the Schauder fixed-point theorem Proc. Am. Math. Soc. 129 1669-1679
[9]  
Bacaër N(2012)The mathematics of infectious diseases J. Math. Biol. 65 309-348
[10]  
Cordova-Lepe F(1978)Estimates for the principal spectrum point for certain time-dependent parabolic operators J. Differ. Equ. 27 320-358