Basic Reproduction Ratios for Almost Periodic Compartmental Epidemic Models

被引:0
作者
Bin-Guo Wang
Xiao-Qiang Zhao
机构
[1] Lanzhou University,School of Mathematics and Statistics
[2] Memorial University of Newfoundland,Department of Mathematics and Statistics
来源
Journal of Dynamics and Differential Equations | 2013年 / 25卷
关键词
Almost periodicity; Compartmental models; Reproduction ratio; Skew-product semiflow; Threshold dynamics; 34D20; 37B55; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
The theory of the basic reproduction ratio R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0}$$\end{document} and its computation formulae for almost periodic compartmental epidemic models are established. It is shown that the disease-free almost periodic solution is stable if R0<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0}<1$$\end{document}, and unstable if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0}>1$$\end{document}. We also apply the developed theory to a patchy model with almost periodic population dispersal and disease transmission coefficients to obtain a threshold type result for uniform persistence and global extinction of the disease.
引用
收藏
页码:535 / 562
页数:27
相关论文
共 33 条