A general extension theorem for cohomology classes on non reduced analytic subspaces

被引:0
作者
JunYan Cao
Jean-Pierre Demailly
Shin-ichi Matsumura
机构
[1] Université Pierre et Marie Curie,Institut de Mathématiques de Jussieu
[2] Université Grenoble Alpes,Institut Fourier
[3] Tohoku University,Mathematical Institute
来源
Science China Mathematics | 2017年 / 60卷
关键词
compact Kähler manifold; singular hermitian metric; coherent sheaf cohomology; Dolbeault cohomology; plurisubharmonic function; estimates; Ohsawa-Takegoshi extension theorem; multiplier ideal sheaf; 32L10; 32E05;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this paper is to generalize the celebrated L2 extension theorem of Ohsawa and Takegoshi in several directions: The holomorphic sections to extend are taken in a possibly singular hermitian line bundle, the subvariety from which the extension is performed may be non reduced, the ambient manifold is Kähler and holomorphically convex, but not necessarily compact.
引用
收藏
页码:949 / 962
页数:13
相关论文
共 14 条
  • [1] Demailly J-P(1982)Estimations Ann Sci École Norm Sup (4) 15 457-511
  • [2] Demailly J-P(2001) pour l’opérateur Internat J Math 6 689-741
  • [3] Peternell T(1983) d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète Ann of Math (2) 118 593-618
  • [4] Schneider M(2013)Pseudo-effective line bundles on compact Kähler manifolds J Reine Angew Math 681 149-174
  • [5] Donnelly H(2015)-cohomology and index theorem for the Bergman metric Ann of Math 182 605-616
  • [6] Fefferman C(2014)A transcendental approach to Kollár’s injectivity theorem II C R Math Acad Sci Paris 352 283-288
  • [7] Fujino O(1984)A proof of Demailly’s strong openness conjecture Publ Res Inst Math Sci 20 297-317
  • [8] Guan Q(2005)The weighted log canonical threshold Publ Res Inst Math Sci 41 565-577
  • [9] Zhou X(1987)-cohomology of ( Math Z 195 197-204
  • [10] Hiêp P H(undefined), undefined undefined undefined-undefined