Sustainability and mechanical property assessment of concrete incorporating eggshell powder and silica fume as binary and ternary cementitious materials

被引:0
作者
Samiullah Sohu
Naraindas Bheel
Ashfaque Ahmed Jhatial
Abdul Aziz Ansari
Irfan Ali Shar
机构
[1] Quaid-e-Awam University of Engineering,Department of Civil Engineering
[2] Science and Technology,Department of Civil and Environmental Engineering
[3] Universiti Teknologi Petronas,Department of Civil Engineering, Shaheed Zulfiqar Ali Bhutto Campus
[4] Mehran University of Engineering and Technology,Department of Civil Engineering
[5] Ziauddin University,Department of Civil Engineering
[6] ISRA University Hyderabad,undefined
来源
Environmental Science and Pollution Research | 2022年 / 29卷
关键词
Binary and ternary cementitious materials; Embodied carbon; Eco-strength efficiency; Eggshell powder; Environmental pollution; Silica fume; Sustainability; Ternary binders;
D O I
暂无
中图分类号
学科分类号
摘要
Cement production emits a significant carbon dioxide (CO2) gas, dramatically influencing the environment. Furthermore, a large amount of energy is consumed during the cement manufacturing process; since Pakistan is already facing an energy crisis, this high energy consumption by the cement industry puts further stress on Pakistan’s energy sector. Hence, the price of cement is rising day by day. Furthermore, waste disposals and concrete ingredients’ restoration after demolition have adversative effects on the environment. Therefore, using these wastes decreases cement manufacturing, thereby reducing energy consumption, but it also aids in safeguarding the environment. The study aimed to determine the concrete properties by partially replacing cement with only eggshell powder (ESP) and combining ESP and silica fume (SF) in a ternary binder system in the mixture. However, workability, water absorption, compressive strength, split tensile strength, and flexural strength were all investigated in this study. In this experimental study, cement was replaced as 5, 8, 11, 15, and 20% of ESP, along with 5, 10, and 15% of silica by weight of cement in concrete. Approximately 21 mixes were prepared, from which 01 control mix, 05 mixes of ESP alone, and 15 mixes designed with a blend of ESP and SF with a 1:1.25:3 mix ratio and 0.5 water–cement ratios. Study parameters advocate the substitution of 11% ESP and 10% SF as the optimal option for maximum strength. Furthermore, combining ESP and SF diminishes the composite concrete mixture’s workability and dry density greatly.
引用
收藏
页码:58685 / 58697
页数:12
相关论文
共 153 条
  • [11] Amin MN(1907)The laws of proportioning concrete Trans Am Soc Civ Eng 59 67-559
  • [12] Bheel N(2004)Industrially interesting approaches to low-CO Cem Concr Res 34 1489-3
  • [13] Mahro SK(2009) cement Aust J Basic Appl Sci 3 1616-340
  • [14] Adesina A(2017)Rice husk ash concrete: the effect of RHA average particle size on mechanical properties and drying shrinkage J Clean Prod 147 546-38968
  • [15] Bheel N(2021)A review on fly ash characteristics-towards promoting high volume sutilisation in developing sustainable concrete Int J Pavement Eng 13 1-1402
  • [16] Abbasi SA(2021)Towards the potential usage of eggshell powder as bio-modifier for asphalt binder and mixture: workability and mechanical properties Silicon 13 335-75
  • [17] Awoyera P(2021)Performance of coconut shell alkali-activated concrete: experimental investigation and statistical modelling Environ Sci Pollut Res 28 38947-81
  • [18] Olalusi OB(2020)Thermo-mechanical properties and sustainability analysis of newly developed eco-friendly structural foamed concrete by reusing palm oil fuel ash and eggshell powder as supplementary cementitious materials Teh Vjesn 27 1394-10973
  • [19] Sohu S(2019)Incorporation of palm oil fuel ash and eggshell powder as supplementary cementitious materials in sustainable foamed concrete Int J Adv Appl Sci 6 71-528
  • [20] Rondon C(2019)Eggshell powder as partial cement replacement and its effect on the workability and compressive strength of concrete Civ Eng J 5 74-381