Extremal Polyomino Chains on k-matchings and k-independent Sets

被引:0
|
作者
Yanqiu Zeng
Fuji Zhang
机构
[1] Xiamen University,School of Mathematical Sciences
来源
Journal of Mathematical Chemistry | 2007年 / 42卷
关键词
polyomino chain; square lattice; graph invariant; Z-polynomial; Y-polynomial; k-matching; k-independent set; total π-electron energy;
D O I
暂无
中图分类号
学科分类号
摘要
Denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}}_n $$\end{document} the set of polyomino chains with n squares. For any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_n \in \mathcal{T}_n$$\end{document}, let mk(Tn) and ik(Tn) be the number of k-matchings and k-independent sets of Tn, respectively. In this paper, we show that for any polyomino chain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T_n \in \mathcal{T}_n$$\end{document} and any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\geqslant 0$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{k}(L_n) \geqslant m_{k}(T_n) \geqslant m_{k}(Z_n)$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_{k}(L_n) \leqslant i_{k}(T_n) \leqslant i_{k}(Z_n)$$\end{document}, with the left equalities holding for all k only if Tn=Ln, and the right equalities holding for all k only if Tn=Zn, where Ln and Zn are the linear chain and the zig-zag chain, respectively.
引用
收藏
页码:125 / 140
页数:15
相关论文
empty
未找到相关数据