Denote by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{T}}_n $$\end{document} the set of polyomino chains with n squares. For any \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_n \in \mathcal{T}_n$$\end{document}, let mk(Tn) and ik(Tn) be the number of k-matchings and k-independent sets of Tn, respectively. In this paper, we show that for any polyomino chain \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ T_n \in \mathcal{T}_n$$\end{document} and any \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k\geqslant 0$$\end{document}, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m_{k}(L_n) \geqslant m_{k}(T_n) \geqslant m_{k}(Z_n)$$\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$i_{k}(L_n) \leqslant i_{k}(T_n) \leqslant i_{k}(Z_n)$$\end{document}, with the left equalities holding for all k only if Tn=Ln, and the right equalities holding for all k only if Tn=Zn, where Ln and Zn are the linear chain and the zig-zag chain, respectively.
机构:
Xinjiang Normal Univ, Dept Math, Urumqi 830054, Xinjiang, Peoples R ChinaXinjiang Normal Univ, Dept Math, Urumqi 830054, Xinjiang, Peoples R China
Li, Shuhua
Bian, Hong
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Normal Univ, Dept Math, Urumqi 830054, Xinjiang, Peoples R ChinaXinjiang Normal Univ, Dept Math, Urumqi 830054, Xinjiang, Peoples R China
Bian, Hong
Zhang, Fuji
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Dept Math, Xiamen 361005, Fujian, Peoples R ChinaXinjiang Normal Univ, Dept Math, Urumqi 830054, Xinjiang, Peoples R China
Zhang, Fuji
Wang, Guoping
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Normal Univ, Dept Math, Urumqi 830054, Xinjiang, Peoples R China
Jiangsu Teacher Univ Technol, Dept Math, Changzhou 213001, Jiangsu, Peoples R ChinaXinjiang Normal Univ, Dept Math, Urumqi 830054, Xinjiang, Peoples R China
机构:
Xinjiang Normal Univ, Sch Math Sci, Xinjiang 830054, Urumqi, Peoples R ChinaXinjiang Normal Univ, Sch Math Sci, Xinjiang 830054, Urumqi, Peoples R China
Bian, Hong
Zhang, Fuji
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Dept Math, Xiamen 361005, Fujian, Peoples R ChinaXinjiang Normal Univ, Sch Math Sci, Xinjiang 830054, Urumqi, Peoples R China
Zhang, Fuji
Wang, Guoping
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Normal Univ, Sch Math Sci, Xinjiang 830054, Urumqi, Peoples R ChinaXinjiang Normal Univ, Sch Math Sci, Xinjiang 830054, Urumqi, Peoples R China
Wang, Guoping
Yu, Haizheng
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R ChinaXinjiang Normal Univ, Sch Math Sci, Xinjiang 830054, Urumqi, Peoples R China