Extremal Polyomino Chains on k-matchings and k-independent Sets

被引:0
|
作者
Yanqiu Zeng
Fuji Zhang
机构
[1] Xiamen University,School of Mathematical Sciences
来源
Journal of Mathematical Chemistry | 2007年 / 42卷
关键词
polyomino chain; square lattice; graph invariant; Z-polynomial; Y-polynomial; k-matching; k-independent set; total π-electron energy;
D O I
暂无
中图分类号
学科分类号
摘要
Denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}}_n $$\end{document} the set of polyomino chains with n squares. For any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_n \in \mathcal{T}_n$$\end{document}, let mk(Tn) and ik(Tn) be the number of k-matchings and k-independent sets of Tn, respectively. In this paper, we show that for any polyomino chain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T_n \in \mathcal{T}_n$$\end{document} and any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\geqslant 0$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{k}(L_n) \geqslant m_{k}(T_n) \geqslant m_{k}(Z_n)$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_{k}(L_n) \leqslant i_{k}(T_n) \leqslant i_{k}(Z_n)$$\end{document}, with the left equalities holding for all k only if Tn=Ln, and the right equalities holding for all k only if Tn=Zn, where Ln and Zn are the linear chain and the zig-zag chain, respectively.
引用
收藏
页码:125 / 140
页数:15
相关论文
共 50 条
  • [1] Extremal polyomino chains on k-matchings and k-independent sets
    Zeng, Yanqiu
    Zhang, Fuji
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2007, 42 (02) : 125 - 140
  • [2] Extremal hexagonal chains concerning k-matchings and k-independent sets
    Zhang, LZ
    Zhang, FJ
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2000, 27 (04) : 319 - 329
  • [3] Extremal polyphenyl chains concerning k-matchings and k-independent sets
    Li, Shuhua
    Bian, Hong
    Zhang, Fuji
    Wang, Guoping
    ARS COMBINATORIA, 2010, 96 : 97 - 103
  • [4] Extremal hexagonal chains concerning k-matchings and k-independent sets
    Lian-zhu Zhang
    Fu-ji Zhang
    Journal of Mathematical Chemistry, 2000, 27 : 319 - 329
  • [5] Extremal double hexagonal chains with respect to k-matchings and k-independent sets
    Ren, Haizhen
    Zhang, Fuji
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (17) : 2269 - 2281
  • [6] Extremal Polyphenyl Spiders Concerning k-matchings and k-independent Sets
    Ma, Xiaoling
    Bian, Hong
    Yu, Haizheng
    ARS COMBINATORIA, 2014, 113 : 3 - 11
  • [7] Extremal polygonal chains on k-matchings
    Cao, Yuefen
    Zhang, Fuji
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2008, 60 (01) : 217 - 235
  • [8] Extremal polygonal cactus chain concerning k-independent sets
    Bian, Hong
    Zhang, Fuji
    Wang, Guoping
    Yu, Haizheng
    ARS COMBINATORIA, 2011, 98 : 167 - 172
  • [9] Computing the Number of k-Matchings in Benzenoid Chains
    Oz, Mert Sinan
    Cangul, Ismail Naci
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2022, 88 (01) : 79 - 92
  • [10] SETS OF K-INDEPENDENT STRINGS
    Ti, Yen-Wu
    Chang, Ching-Lueh
    Lyuu, Yuh-Dauh
    Shen, Alexander
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2010, 21 (03) : 321 - 327