Approximation of lipschitz functions by Δ-convex functions in banach spaces

被引:0
|
作者
Manuel Cepedello Boiso
机构
[1] Université Paris 6,Equipe d’Analyse
[2] Universidad de Sevilla, Boite 186, Tour 46
来源
Israel Journal of Mathematics | 1998年 / 106卷
关键词
Banach Space; Convex Function; Uniform Convergence; Lipschitz Function; Power Type;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we give some result about the approximation of a Lipschitz function on a Banach space by means of Δ-convex functions. In particular, we prove that the density of Δ-convex functions in the set of Lipschitz functions for the topology of uniform convergence on bounded sets characterizes the superreflexivity of the Banach space. We also show that Lipschitz functions on superreflexive Banach spaces are uniform limits on the whole space of Δ-convex functions.
引用
收藏
页码:269 / 284
页数:15
相关论文
共 50 条