Approximation of lipschitz functions by Δ-convex functions in banach spaces
被引:0
|
作者:
Manuel Cepedello Boiso
论文数: 0引用数: 0
h-index: 0
机构:Université Paris 6,Equipe d’Analyse
Manuel Cepedello Boiso
机构:
[1] Université Paris 6,Equipe d’Analyse
[2] Universidad de Sevilla, Boite 186, Tour 46
来源:
Israel Journal of Mathematics
|
1998年
/
106卷
关键词:
Banach Space;
Convex Function;
Uniform Convergence;
Lipschitz Function;
Power Type;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper we give some result about the approximation of a Lipschitz function on a Banach space by means of Δ-convex functions. In particular, we prove that the density of Δ-convex functions in the set of Lipschitz functions for the topology of uniform convergence on bounded sets characterizes the superreflexivity of the Banach space. We also show that Lipschitz functions on superreflexive Banach spaces are uniform limits on the whole space of Δ-convex functions.
机构:
Moscow State University, Faculty of Mechanics and Mathematics, Leninskie GoryMoscow State University, Faculty of Mechanics and Mathematics, Leninskie Gory
Gashkov S.B.
Wegner J.V.
论文数: 0引用数: 0
h-index: 0
机构:
Moscow State University, Faculty of Mechanics and Mathematics, Leninskie GoryMoscow State University, Faculty of Mechanics and Mathematics, Leninskie Gory
机构:
Univ Claude Bernard Lyon 1, Inst Camille Jordan, CNRS UMR 5208, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, FranceUniv Claude Bernard Lyon 1, Inst Camille Jordan, CNRS UMR 5208, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France