Empirical likelihood for varying-coefficient semiparametric mixed-effects errors-in-variables models with longitudinal data

被引:0
作者
Xing-cai Zhou
Jin-Guan Lin
机构
[1] Southeast University,Department of Mathematics
[2] Tongling University,Department of Mathematics and Computer Science
来源
Statistical Methods & Applications | 2014年 / 23卷
关键词
Empirical likelihood; Varying coefficient; Mixed-effects; Errors-in-variables; Longitudinal data; Confidence regions; Primary 62H12; Secondary 62A10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the empirical likelihood inferences for varying-coefficient semiparametric mixed-effects errors-in-variables models with longitudinal data are investigated. We construct the empirical log-likelihood ratio function for the fixed-effects parameters and the mean parameters of random-effects. The empirical log-likelihood ratio at the true parameters is proven to be asymptotically χq+r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^2_{q+r}$$\end{document}, where q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} and r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} are dimensions of the fixed and random effects respectively, and the corresponding confidence regions for them are then constructed. We also obtain the maximum empirical likelihood estimator of the parameters of interest, and prove it is the asymptotically normal under some suitable conditions. A simulation study and a real data application are undertaken to assess the finite sample performance of the proposed method.
引用
收藏
页码:51 / 69
页数:18
相关论文
共 95 条
[1]  
Bai Y(2010)Weighted empirical likelihood for generalized linear models with longitudinal data J Stat Plan Inference 140 3446-3456
[2]  
Fung WK(2009)Empirical likelihood for mixed-effects error-in-variables model Acta Mathematicae Applicatae Sinica (English Series) 25 561-578
[3]  
Zhu ZY(2003)Empirical likelihood confidence region for parameter in the errors-in-variables models J Multivar Anal 84 101-115
[4]  
Chen QH(2004)Estimation in mixed effects model with errors in variables J Multivar Anal 91 53-73
[5]  
Zhong PS(2005)Profile likelihood inferences on semi-parametric varying-coefficient partially linear models Bernoulli 11 1031-1057
[6]  
Cui HJ(2004)New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis J Am Stat Assoc 99 710-723
[7]  
Cui HJ(2002)Varying-coefficient models and basis function approximations for the analysis of repeated measurements Biometrika 89 111-128
[8]  
Chen SX(2004)Polynomial spline estimation and inference for varying coefficient models with longitudinal data Statistica Sinica 14 763-788
[9]  
Cui HJ(2009)Empirical likelihood for nonparametric parts in semiparametric varying-coefficient partially linear models Stat Probab Lett 79 1798-1808
[10]  
Ng Kai W(2010)Empirical likelihood based inference for semiparametric varying-coefficient partially linear models with error-prone linear covariates Stat Probab Lett 80 497-504