On Solvability of Boundary Value Problems for Kinetic Operator-Differential Equations

被引:0
作者
Sergey Pyatkov
Sergey Popov
Vasilii Antipin
机构
[1] Ugra State University,
[2] North-Eastern Federal University,undefined
来源
Integral Equations and Operator Theory | 2014年 / 80卷
关键词
Primary 34G10; Secondary 47A50; 74A25; 82C40; Kinetic equation; Operator-differential equation; Krein space; Forward–backward parabolic equation;
D O I
暂无
中图分类号
学科分类号
摘要
We study solvability of boundary value problems for the so-called kinetic operator-differential equations of the form B(t)ut−L(t)u = f, where L(t) and B(t) are families of linear operators defined in a complex Hilbert space E. We do not assume that the operator B is invertible and that the spectrum of the pencil L −λB is included into one of the half-planes Re λ < a or Re λ > a(a∈R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(a\in {\mathbb{R}})}$$\end{document}. Under certain conditions on the above operators, we prove several existence and uniqueness theorems and study smoothness questions in weighted Sobolev spaces for solutions.
引用
收藏
页码:557 / 580
页数:23
相关论文
共 50 条
[41]   The Method of Singular Equations in Boundary Value Problems in Kinetic Theory [J].
A. V. Latyshev ;
A. A. Yushkanov .
Theoretical and Mathematical Physics, 2005, 143 :854-869
[42]   Completeness of elementary solutions to a class of second order operator-differential equations [J].
S. S. Mirzoev ;
M. Yu. Salimov .
Siberian Mathematical Journal, 2010, 51 :648-659
[43]   On holomorphic solutions of some boundary-value problems for second-order elliptic operator differential equations [J].
S. S. Mirzoev ;
R. F. Safarov .
Ukrainian Mathematical Journal, 2011, 63 :480-486
[44]   ON HOLOMORPHIC SOLUTIONS OF SOME BOUNDARY-VALUE PROBLEMS FOR SECOND-ORDER ELLIPTIC OPERATOR DIFFERENTIAL EQUATIONS [J].
Mirzoev, S. S. ;
Safarov, R. F. .
UKRAINIAN MATHEMATICAL JOURNAL, 2011, 63 (03) :480-486
[45]   Completeness of elementary solutions to a class of second order operator-differential equations [J].
Mirzoev, S. S. ;
Salimov, M. Yu. .
SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (04) :648-659
[46]   On completeness of elementary generalized solutions of a class of operator-differential equations of a higher order [J].
Gumbataliev, Rovshan Z. .
TURKISH JOURNAL OF MATHEMATICS, 2009, 33 (04) :383-396
[47]   On the Existence and Uniqueness of Generalized Solutions of Second Order Partial Operator-Differential Equations [J].
Aslanov, H., I ;
Hatamova, R. F. .
AZERBAIJAN JOURNAL OF MATHEMATICS, 2022, 12 (01) :68-79
[48]   On conditions of regular solvability for two classes of third-order operator-differential equations in a fourth-order Sobolev-type space [J].
Aliev, Araz R. ;
Muradova, Nazila L. .
TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (02) :608-619
[49]   On a Boundary-Value Problem for One Class of Differential Equations of the Fourth Order with Operator Coefficients [J].
Aliev, A. R. .
AZERBAIJAN JOURNAL OF MATHEMATICS, 2011, 1 (01) :145-156
[50]   The Cauchy problem for certain systems of operator-differential equations of arbitrary order in locally convex spaces [J].
N. A. Aksenov .
Mathematical Notes, 2011, 90