On Solvability of Boundary Value Problems for Kinetic Operator-Differential Equations

被引:0
|
作者
Sergey Pyatkov
Sergey Popov
Vasilii Antipin
机构
[1] Ugra State University,
[2] North-Eastern Federal University,undefined
来源
Integral Equations and Operator Theory | 2014年 / 80卷
关键词
Primary 34G10; Secondary 47A50; 74A25; 82C40; Kinetic equation; Operator-differential equation; Krein space; Forward–backward parabolic equation;
D O I
暂无
中图分类号
学科分类号
摘要
We study solvability of boundary value problems for the so-called kinetic operator-differential equations of the form B(t)ut−L(t)u = f, where L(t) and B(t) are families of linear operators defined in a complex Hilbert space E. We do not assume that the operator B is invertible and that the spectrum of the pencil L −λB is included into one of the half-planes Re λ < a or Re λ > a(a∈R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(a\in {\mathbb{R}})}$$\end{document}. Under certain conditions on the above operators, we prove several existence and uniqueness theorems and study smoothness questions in weighted Sobolev spaces for solutions.
引用
收藏
页码:557 / 580
页数:23
相关论文
共 50 条