Liouville-type theorem for Kirchhoff equations involving Grushin operators

被引:0
作者
Yunfeng Wei
Caisheng Chen
Hongwei Yang
机构
[1] Nanjing Audit University,School of Statistics and Mathematics
[2] Hohai University,College of Science
[3] Shandong University of Science and Technology,College of Mathematics and Systems Science
来源
Boundary Value Problems | / 2020卷
关键词
Kirchhoff equations; Grushin operator; Stable weak solutions; Liouville-type theorem; 35J61; 35B53; 35A01;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to prove the Liouville-type theorem of the following weighted Kirchhoff equations: 0.1−M(∫RNω(z)|∇Gu|2dz)divG(ω(z)∇Gu)=f(z)eu,z=(x,y)∈RN=RN1×RN2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \begin{aligned}[b] & -M \biggl( \int _{{\mathbb{R}} ^{N}}\omega (z) \vert \nabla _{G}u \vert ^{2}\,dz \biggr) \operatorname{div}_{G} \bigl(\omega (z) \nabla _{G}u \bigr)=f(z)e^{u}, \\ &\quad z=(x,y) \in R^{N}=R^{N_{1}}\times R^{N_{2}} \end{aligned} \end{aligned}$$ \end{document} and 0.2M(∫RNω(z)|∇Gu|2dz)divG(ω(z)∇Gu)=f(z)u−q,z=(x,y)∈RN=RN1×RN2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \begin{aligned}[b] & M \biggl( \int _{\mathbb{R}^{N}}\omega (z) \vert \nabla _{G}u \vert ^{2}\,dz \biggr) \operatorname{div}_{G} \bigl(\omega (z) \nabla _{G}u \bigr)=f(z)u^{-q}, \\ &\quad z=(x,y) \in {\mathbb{R}} ^{N}={\mathbb{R}} ^{N_{1}}\times {\mathbb{R}} ^{N_{2}}, \end{aligned} \end{aligned}$$ \end{document} where M(t)=a+btk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M(t)=a+bt^{k}$\end{document}, t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\geq 0$\end{document}, with a>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a>0$\end{document}, b,k≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b, k\geq 0$\end{document}, k=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k=0$\end{document} if and only if b=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b=0$\end{document}. q>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q>0$\end{document} and ω(z),f(z)∈Lloc1(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega (z), f(z)\in L^{1}_{\mathrm{loc}}({\mathbb{R}} ^{N})$\end{document} are nonnegative functions satisfying ω(z)≤C1∥z∥Gθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega (z)\leq C_{1}\|z \|_{G}^{\theta }$\end{document} and f(z)≥C2∥z∥Gd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(z)\geq C_{2}\|z\|_{G}^{d}$\end{document} as ∥z∥G≥R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|z\|_{G} \geq R_{0}$\end{document} with d>θ−2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d>\theta -2$\end{document}, R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}$\end{document}, Ci\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C_{i}$\end{document} (i=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i=1,2$\end{document}) are some positive constants, here α≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \geq 0$\end{document} and ∥z∥G=(|x|2(1+α)+|y|2)12(1+α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|z\|_{G}=(|x|^{2(1+ \alpha )}+|y|^{2})^{\frac{1}{2(1+\alpha )}}$\end{document} is the norm corresponding to the Grushin distance. Nα=N1+(1+α)N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{\alpha }=N_{1}+(1+\alpha )N_{2}$\end{document} is the homogeneous dimension of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb{R}} ^{N}$\end{document}. divG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{div}_{G}$\end{document} (resp., ∇G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nabla _{G}$\end{document}) is Grushin divergence (resp., Grushin gradient). Under suitable assumptions on k, θ, d, and Nα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{\alpha }$\end{document}, the nonexistence of stable weak solutions to equations (0.1) and (0.2) is investigated.
引用
收藏
相关论文
共 79 条
  • [1] Birindelli I.(1997)Liouville theorems for semilinear equations on the Heisenberg group Ann. Inst. Henri Poincaré, Anal. Non Linéaire 14 295-308
  • [2] Capuzzo Dolcetta I.(2015)Regularity of stable solutions to semilinear elliptic equations on Riemannian models Adv. Nonlinear Anal. 4 295-309
  • [3] Cutrì A.(2017)Liouville type theorem for stable solutions of Appl. Math. Lett. 68 62-67
  • [4] Castorina D.(2017)-Laplace equation in Nonlinear Anal. 160 44-52
  • [5] Sanchón M.(2018)Liouville type theorems for stable solutions of Electron. J. Differ. Equ. 2018 2003-2012
  • [6] Chen C.S.(2012)-Laplace equation in Proc. Am. Math. Soc. 140 1099-1119
  • [7] Chen C.S.(2009)Liouville-type theorems for stable solutions of singular quasilinear elliptic equations Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 511-541
  • [8] Song H.X.(2003)On stable entire solutions of semi-linear elliptic equations with weights J. Differ. Equ. 193 1333-1338
  • [9] Yang H.W.(2009)Liouville results for Proc. Am. Math. Soc. 137 2387-2414
  • [10] Chen C.S.(2009)-Laplace equations of Lane–Emden–Fowler type J. Differ. Equ. 246 785-801