Polynomial bound for partition rank in terms of analytic rank

被引:0
|
作者
Luka Milićević
机构
[1] Mathematical Institute of the Serbian Academy of Sciences and Arts,
来源
Geometric and Functional Analysis | 2019年 / 29卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let G1,…,Gk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_1, \ldots , G_k$$\end{document} be vector spaces over a finite field F=Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}} = {\mathbb {F}}_q$$\end{document} with a non-trivial additive character χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}. The analytic rank of a multilinear form α:G1×⋯×Gk→F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha :G_1 \times \cdots \times G_k \rightarrow {\mathbb {F}}$$\end{document} is defined as arank(α)=-logqEx1∈G1,…,xk∈Gkχ(α(x1,…,xk))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {arank}}(\alpha ) = -\log _q \mathop {\mathbb {E}} _{x_1 \in G_1, \ldots , x_k\in G_k} \chi (\alpha (x_1,\ldots , x_k))$$\end{document}. The partition rank prank(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {prank}}(\alpha )$$\end{document} of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is the smallest number of maps of partition rank 1 that add up to α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, where a map is of partition rank 1 if it can be written as a product of two multilinear forms, depending on different coordinates. It is easy to see that arank(α)≤O(prank(α))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {arank}}(\alpha ) \le O({\text {prank}}(\alpha ))$$\end{document} and it has been known that prank(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {prank}}(\alpha )$$\end{document} can be bounded from above in terms of arank(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {arank}}(\alpha )$$\end{document}. In this paper, we improve the latter bound to polynomial, i.e. we show that there are quantities C, D depending on k only such that prank(α)≤C(arank(α)D+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {prank}}(\alpha ) \le C ({\text {arank}}(\alpha )^D + 1)$$\end{document}. As a consequence, we prove a conjecture of Kazhdan and Ziegler. The same result was obtained independently and simultaneously by Janzer.
引用
收藏
页码:1503 / 1530
页数:27
相关论文
共 50 条
  • [21] The rank of the endomorphism monoid of a uniform partition
    João Araújo
    Csaba Schneider
    Semigroup Forum, 2009, 78
  • [22] The rank of the endomorphism monoid of a uniform partition
    Araujo, Joao
    Schneider, Csaba
    SEMIGROUP FORUM, 2009, 78 (03) : 498 - 510
  • [23] A BOUND ON THE RANK OF PIQ(SN)
    SELICK, P
    ILLINOIS JOURNAL OF MATHEMATICS, 1982, 26 (02) : 293 - 295
  • [24] An upper bound for nonnegative rank
    Shitov, Yaroslav
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 122 : 126 - 132
  • [25] Extractors And Rank Extractors For Polynomial Sources
    Dvir, Zeev
    Gabizon, Ariel
    Wigderson, Avi
    COMPUTATIONAL COMPLEXITY, 2009, 18 (01) : 1 - 58
  • [26] Full rank filters and polynomial reproduction
    Cotronei, Mariantonia
    Sauer, Tomas
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2007, 6 (03) : 667 - 687
  • [27] Unique decomposition for a polynomial of low rank
    Ballico, Edoardo
    Bernardi, Alessandra
    ANNALES POLONICI MATHEMATICI, 2013, 108 (03) : 219 - 224
  • [28] Extractors And Rank Extractors For Polynomial Sources
    Zeev Dvir
    Ariel Gabizon
    Avi Wigderson
    computational complexity, 2009, 18 : 1 - 58
  • [29] Polynomial structures in rank statistics distributions
    Lefevre, Claude
    Picard, Philippe
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (04) : 1380 - 1393
  • [30] Extractors and rank extractors for polynomial sources
    Dvir, Zeev
    Gabizon, Ariel
    Wigderson, Avi
    48TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2007, : 52 - +