On rational functions of first-class complexity

被引:0
作者
M. Stepanova
机构
[1] Moscow State University,Faculty of Mechanics and Mathematics
来源
Russian Journal of Mathematical Physics | 2016年 / 23卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
It is proved that, for every rational function of two variables P(x, y) of analytic complexity one, there is either a representation of the form f(a(x) + b(y)) or a representation of the form f(a(x)b(y)), where f(x), a(x), b(x) are nonconstant rational functions of a single variable. Here, if P(x, y) is a polynomial, then f(x), a(x), and b(x) are nonconstant polynomials of a single variable.
引用
收藏
页码:251 / 256
页数:5
相关论文
共 9 条
  • [1] Ostrowski A.(1920)Über Dirichletsche Reihen und algebraische Differentialgleichungen Math. Z. 8 241-298
  • [2] Grigoriev D. Yu.(1982)Additive Complexity in Directed Computations Theoret. Comput. Sci. 19 39-67
  • [3] Blum L.(1989)On a Theory of Computation and Complexity over the Real Numbers: NP-Completeness, Recursive Functions and Universal Machines Bull. Amer. Math. Soc. (N.S.) 21 1-46
  • [4] Smale S.(2004)Hilbert’s thirteenth problem and related questions Uspekhi Mat. Nauk 59 11-24
  • [5] Shub M.(2007)Analytic Complexity of Functions of Two Variables Russ. J. Math. Phys. 14 243-249
  • [6] Vitushkin A. G.(2012)Analytical Complexity: Development of the Topic Russ. J. Math. Phys. 19 428-439
  • [7] Beloshapka V. K.(2015)A Seven-Dimensional Family of Simple Harmonic Functions Mat. Zametki 98 803-808
  • [8] Beloshapka V. K.(undefined)undefined undefined undefined undefined-undefined
  • [9] Beloshapka V. K.(undefined)undefined undefined undefined undefined-undefined