Nilpotency of Lie Type Algebras with Metacyclic Frobenius Groups of Automorphisms

被引:0
作者
N. Yu. Makarenko
机构
[1] Sobolev Institute of Mathematics,
来源
Siberian Mathematical Journal | 2023年 / 64卷
关键词
Lie type algebras; Frobenius group; automorphism; graded; solvable; nilpotent; Frobenius group of automorphisms; 512.554.38;
D O I
暂无
中图分类号
学科分类号
摘要
Assume that a Lie type algebra admits a Frobenius group of automorphisms with cyclic kernel \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ F $\end{document} of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ n $\end{document} and complement \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ H $\end{document} of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ q $\end{document} such that the fixed-point subalgebra with respect to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ F $\end{document} is trivial and the fixed-point subalgebra with respect to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ H $\end{document} is nilpotent of class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ c $\end{document}. If the ground field contains a primitive \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ n $\end{document}th root of unity, then the algebra is nilpotent and the nilpotency class is bounded in terms of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ q $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ c $\end{document}. The result extends the well-known theorem of Khukhro, Makarenko, and Shumyatsky on Lie algebras with metacyclic Frobenius group of automorphisms.
引用
收藏
页码:639 / 648
页数:9
相关论文
共 9 条
  • [1] Khukhro E(2008)Graded Lie rings with many commuting components and an application to 2-Frobenius groups Bull. Lond. Math. Soc. 40 907-912
  • [2] Makarenko N.Yu. P(2010)Frobenius groups as groups of automorphisms Proc. Amer. Math. Soc. 138 3425-3436
  • [3] Shumyatsky E(2014)Frobenius groups of automorphisms and their fixed points Forum Math. 26 73-112
  • [4] Khukhro P(1993)Automorphisms of finite groups of bounded rank Israel J. Math. 82 395-404
  • [5] Makarenko N.Yu. A(1963)The solubility of Lie algebras with regular automorphisms of finite period Dokl. Akad. Nauk SSSR 150 467-469
  • [6] Shumyatsky V(1958)Some sufficient conditions for a group to be nilpotent Illinois J. Math. 2 787-801
  • [7] Shalev P(undefined)undefined undefined undefined undefined-undefined
  • [8] Kreknin undefined(undefined)undefined undefined undefined undefined-undefined
  • [9] Hall undefined(undefined)undefined undefined undefined undefined-undefined