Slow light topological photonics with counter-propagating waves and its active control on a chip

被引:35
作者
Kumar, Abhishek [1 ,2 ]
Tan, Yi Ji [1 ,2 ]
Navaratna, Nikhil [1 ,2 ]
Gupta, Manoj [1 ,2 ]
Pitchappa, Prakash [3 ]
Singh, Ranjan [1 ,2 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[2] Nanyang Technol Univ, Photon Inst, Ctr Disrupt Photon Technol, Singapore 639798, Singapore
[3] Agcy Sci Technol & Res, Inst Microelect, 2 Fusionopolis Way, Singapore 138634, Singapore
基金
新加坡国家研究基金会;
关键词
GUIDES; BANDWIDTH;
D O I
10.1038/s41467-024-45175-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Topological slow light exhibits potential to achieve stopped light by virtue of its widely known robust and non-reciprocal behaviours. Conventional approach for achieving topological slow light often involves flat-band engineering without disentangling the underlying physical mechanism. Here, we unveil the presence of counter-propagating waves within valley kink states as the distinctive hallmark of the slow light topological photonic waveguides. These counter-propagating waves, supported by topological vortices along glide-symmetric interface, provide significant flexibility for controlling the slowness of light. We tune the group velocity of light by changing the spatial separation between vortices adjacent to the glide-symmetric interface. We also dynamically control the group delay by introducing a non-Hermitian defect using photoexcitation to adjust the relative strength of the counter-propagating waves. This study introduces active slow light topological photonic device on a silicon chip, opening new horizons for topological photon transport through defects, topological light-matter interactions, nonlinear topological photonics, and topological quantum photonics.
引用
收藏
页数:9
相关论文
共 40 条
[1]   Quantifying the Robustness of Topological Slow Light [J].
Arregui, Guillermo ;
Gomis-Bresco, Jordi ;
Sotomayor-Torres, Clivia M. ;
David Garcia, Pedro .
PHYSICAL REVIEW LETTERS, 2021, 126 (02)
[2]   Slow light in photonic crystals [J].
Baba, Toshihiko .
NATURE PHOTONICS, 2008, 2 (08) :465-473
[3]   Slow light engineering in photonic crystals [J].
Baba, Toshihiko ;
Mori, Daisuke .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (09) :2659-2665
[4]   Chiral quantum optics using a topological resonator [J].
Barik, Sabyasachi ;
Karasahin, Aziz ;
Mittal, Sunil ;
Waks, Edo ;
Hafezi, Mohammad .
PHYSICAL REVIEW B, 2020, 101 (20)
[5]   A topological quantum optics interface [J].
Barik, Sabyasachi ;
Karasahin, Aziz ;
Flower, Christopher ;
Cai, Tao ;
Miyake, Hirokazu ;
DeGottardi, Wade ;
Hafezi, Mohammad ;
Waks, Edo .
SCIENCE, 2018, 359 (6376) :666-668
[6]  
Chen FJ, 2022, Arxiv, DOI arXiv:2208.07228
[7]   Broadband dispersionless topological slow light [J].
Chen, Jianfeng ;
Liang, Wenyao ;
Li, Zhi-Yuan .
OPTICS LETTERS, 2020, 45 (18) :4964-4967
[8]   Switchable slow light rainbow trapping and releasing in strongly coupling topological photonic systems [J].
Chen, Jianfeng ;
Liang, Wenyao ;
Li, Zhi-Yuan .
PHOTONICS RESEARCH, 2019, 7 (09) :1075-1080
[9]   Strong coupling of topological edge states enabling group-dispersionless slow light in magneto-optical photonic crystals [J].
Chen, Jianfeng ;
Liang, Wenyao ;
Li, Zhi-Yuan .
PHYSICAL REVIEW B, 2019, 99 (01)
[10]   Topologically Protected Valley-Dependent Quantum Photonic Circuits [J].
Chen, Yang ;
He, Xin-Tao ;
Cheng, Yu-Jie ;
Qiu, Hao-Yang ;
Feng, Lan-Tian ;
Zhang, Ming ;
Dai, Dao-Xin ;
Guo, Guang-Can ;
Dong, Jian-Wen ;
Ren, Xi-Feng .
PHYSICAL REVIEW LETTERS, 2021, 126 (23)