Cross-link assisted spatial proteomics to map sub-organelle proteomes and membrane protein topologies

被引:17
作者
Zhu, Ying [1 ]
Akkaya, Kerem Can [1 ,2 ]
Ruta, Julia [1 ]
Yokoyama, Nanako [1 ]
Wang, Cong [1 ]
Ruwolt, Max [1 ]
Lima, Diogo Borges [1 ]
Lehmann, Martin [2 ]
Liu, Fan [1 ,3 ]
机构
[1] Leibniz Forschungsinst Mol Pharmakol FMP, Dept Struct Biol, Robert Roessle Str 10, D-13125 Berlin, Germany
[2] Leibniz Forschungsinst Mol Pharmakol FMP, Dept Mol Physiol & Cell Biol, Robert Roessle Str 10, D-13125 Berlin, Germany
[3] Charite Univ Med Berlin, Charite Pl 1, D-10117 Berlin, Germany
关键词
SYNAPTIC VESICLES; MITOCHONDRIA; ARCHITECTURE; IDENTIFICATION; INTERACTOME; CELLS; TOOL;
D O I
10.1038/s41467-024-47569-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The functions of cellular organelles and sub-compartments depend on their protein content, which can be characterized by spatial proteomics approaches. However, many spatial proteomics methods are limited in their ability to resolve organellar sub-compartments, profile multiple sub-compartments in parallel, and/or characterize membrane-associated proteomes. Here, we develop a cross-link assisted spatial proteomics (CLASP) strategy that addresses these shortcomings. Using human mitochondria as a model system, we show that CLASP can elucidate spatial proteomes of all mitochondrial sub-compartments and provide topological insight into the mitochondrial membrane proteome. Biochemical and imaging-based follow-up studies confirm that CLASP allows discovering mitochondria-associated proteins and revising previous protein sub-compartment localization and membrane topology data. We also validate the CLASP concept in synaptic vesicles, demonstrating its applicability to different sub-cellular compartments. This study extends the scope of cross-linking mass spectrometry beyond protein structure and interaction analysis towards spatial proteomics, and establishes a method for concomitant profiling of sub-organelle and membrane proteomes. The spatial mapping of proteins can give important functional insights. Here, Zhu et al. develop a cross-linking mass spectrometry-based spatial proteomics method that does not require protein engineering, affords sub-organelle resolution, and elucidates both protein locations and membrane topologies.
引用
收藏
页数:18
相关论文
共 67 条
  • [1] NIPSNAP1 and NIPSNAP2 Act as "Eat Me" Signals for Mitophagy
    Abudu, Yakubu Princely
    Pankiv, Serhiy
    Mathai, Benan John
    Lystad, Aif Hakon
    Bindesboll, Christian
    Brenne, Hanne Britt
    Ng, Matthew Yoke Wui
    Thiede, Bernd
    Yamamoto, Ai
    Nthiga, Thaddaeus Mutugi
    Lamark, Trond
    Esguerra, Camila, V
    Johansen, Terje
    Simonsen, Anne
    [J]. DEVELOPMENTAL CELL, 2019, 49 (04) : 509 - +
  • [2] A High-Density Human Mitochondrial Proximity Interaction Network
    Antonicka, Hana
    Lin, Zhen-Yuan
    Janer, Alexandre
    Aaltonen, Mari J.
    Weraarpachai, Woranontee
    Gingras, Anne-Claude
    Shoubridge, Eric A.
    [J]. CELL METABOLISM, 2020, 32 (03) : 479 - +
  • [3] Mitochondrial 2′, 3′-cyclic nucleotide 3′-phosphodiesterase (CNP) interacts with mPTP modulators and functional complexes (I-V) coupled with release of apoptotic factors
    Baburina, Yulia
    Azarashvili, Tamara
    Grachev, Dmitry
    Krestinina, Olga
    Galvita, Anastasya
    Stricker, Rolf
    Reiser, Georg
    [J]. NEUROCHEMISTRY INTERNATIONAL, 2015, 90 : 46 - 55
  • [4] Spatially resolved protein map of intact human cytomegalovirus virions
    Bogdanow, Boris
    Gruska, Iris
    Muehlberg, Lars
    Protze, Jonas
    Hohensee, Svea
    Vetter, Barbara
    Bosse, Jens B.
    Lehmann, Martin
    Sadeghi, Mohsen
    Wiebusch, Lueder
    Liu, Fan
    [J]. NATURE MICROBIOLOGY, 2023, 8 (9) : 1732 - 1747
  • [5] Organellar Maps Through Proteomic Profiling - A Conceptual Guide
    Borner, Georg H. H.
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2020, 19 (07) : 1076 - 1087
  • [6] Proximity labeling: an enzymatic tool for spatial biology
    Choi, Chang-Ryul
    Rhee, Hyun-Woo
    [J]. TRENDS IN BIOTECHNOLOGY, 2022, 40 (02) : 145 - 148
  • [7] A draft map of the mouse pluripotent stem cell spatial proteome
    Christoforou, Andy
    Mulvey, Claire M.
    Breckels, Lisa M.
    Geladaki, Aikaterini
    Hurrell, Tracey
    Hayward, Penelope C.
    Naake, Thomas
    Gatto, Laurent
    Viner, Rosa
    Arias, Alfonso Martinez
    Lilley, Kathryn S.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [8] Subcellular proteomics
    Christopher, Josie A.
    Stadler, Charlotte
    Martin, Claire E.
    Morgenstern, Marcel
    Pan, Yanbo
    Betsinger, Cora N.
    Rattray, David G.
    Mahdessian, Diana
    Gingras, Anne-Claude
    Warscheid, Bettina
    Lehtio, Janne
    Cristea, Ileana M.
    Foster, Leonard J.
    Emili, Andrew
    Lilley, Kathryn S.
    [J]. NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [9] Macrophage migration inhibitory factor regulates mitochondrial dynamics and cell growth of human cancer cell lines through CD74-NF-κB signaling
    De, Rudranil
    Sarkar, Souvik
    Mazumder, Somnath
    Debsharma, Subhashis
    Siddiqui, Asim Azhar
    Saha, Shubhra Jyoti
    Banerjee, Chinmoy
    Nag, Shiladitya
    Saha, Debanjan
    Pramanik, Saikat
    Bandyopadhyay, Uday
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (51) : 19740 - 19760
  • [10] Cell-type and subcellular compartment-specific APEX2 proximity labeling reveals activity-dependent nuclear proteome dynamics in the striatum
    Dumrongprechachan, V.
    Salisbury, R. B.
    Soto, G.
    Kumar, M.
    MacDonald, M. L.
    Kozorovitskiy, Y.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)