Understanding Diurnality and Inter-Seasonality of a Sub-tropical Urban Heat Island

被引:0
作者
Tirthankar Chakraborty
Chandan Sarangi
Sachchida Nand Tripathi
机构
[1] IIT Kanpur,Environmental Engineering and Management Programme
[2] IIT Kanpur,Civil Engineering Department
[3] IIT Kanpur,Civil Engineering Department and Centre for Environmental Science & Engineering
来源
Boundary-Layer Meteorology | 2017年 / 163卷
关键词
Land-surface model; Land-surface temperature; Radiative balance; Remote sensing; Urban heat-islands;
D O I
暂无
中图分类号
学科分类号
摘要
We quantify the spatial and temporal aspects of the urban heat-island (UHI) effect for Kanpur, a major city in the humid sub-tropical monsoon climate of the Gangetic basin. Fixed station measurements are used to investigate the diurnality and inter-seasonality in the urban–rural differences in surface temperature (ΔTs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta } T_\mathrm{s}$$\end{document}) and air temperature (ΔTc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta } T_\mathrm{c}$$\end{document}) separately. The extent of the spatial variations of the nighttime ΔTc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta } T_\mathrm{c}$$\end{document} and ΔTs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta } T_\mathrm{s}$$\end{document} is investigated through mobile campaigns and satellite remote sensing respectively. Nighttime ΔTc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta } T_\mathrm{c}$$\end{document} values dominate during both the pre-monsoon (maximum of 3.6 ∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ \hbox {C}$$\end{document}) and the monsoon (maximum of 2.0 ∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ \hbox {C}$$\end{document}). However, the diurnality in ΔTs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta } T_\mathrm{s}$$\end{document} is different, with higher daytime values during the pre-monsoon, but very little diurnality during the monsoon. The nighttime ΔTs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta } T_\mathrm{s}$$\end{document} value is mainly associated with differences in the urban–rural incoming longwave radiative flux (r2=0.33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r^{2}=0.33$$\end{document} during the pre-monsoon; 0.65 during the monsoon), which, in turn, causes a difference in the outgoing longwave radiative flux. This difference may modulate the nighttime ΔTc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta } T_\mathrm{c}$$\end{document} value as suggested by significant correlations (r2=0.68\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r^{2}=0.68$$\end{document} for the pre-monsoon; 0.50 for the monsoon). The magnitude of ΔTc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta } T_\mathrm{c}$$\end{document} may also be modulated by advection, as it is inversely related with the urban wind speed. A combination of in situ, remotely sensed, and model simulation data were used to show that the inter-seasonality in ΔTs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta } T_\mathrm{s}$$\end{document}, and, to a lesser extent, in ΔTc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta } T_\mathrm{c}$$\end{document}, may be related to the change in the land use of the rural site between the pre-monsoon and the monsoon periods. Results suggest that the degree of coupling of ΔTs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta } T_\mathrm{s}$$\end{document} and ΔTc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta } T_\mathrm{c}$$\end{document} may be a strong function of land use and land cover.
引用
收藏
页码:287 / 309
页数:22
相关论文
共 24 条
  • [1] Understanding Diurnality and Inter-Seasonality of a Sub-tropical Urban Heat Island
    Chakraborty, Tirthankar
    Sarangi, Chandan
    Tripathi, Sachchida Nand
    BOUNDARY-LAYER METEOROLOGY, 2017, 163 (02) : 287 - 309
  • [2] Assessment of urbanisation and urban heat island intensities using landsat imageries during 2000-2018 over a sub-tropical Indian City
    Sultana, Sabiha
    Satyanarayana, A. N., V
    SUSTAINABLE CITIES AND SOCIETY, 2020, 52
  • [3] Spatio-temporal development of the urban heat island in a socioeconomically diverse tropical city
    Ramsay, Emma E.
    Duffy, Grant A.
    Burge, Kerrie
    Taruc, Ruzka R.
    Fleming, Genie M.
    Faber, Peter A.
    Chown, Steven L.
    ENVIRONMENTAL POLLUTION, 2023, 316
  • [4] UNDERSTANDING THE DYNAMICS OF URBAN HEAT ISLAND AS A FUNCTION OF DEVELOPMENT REGULATIONS
    Srivastava, Vandana
    Sharma, Alok
    Jadon, Sanjay Singh
    JOURNAL OF ENVIRONMENTAL ENGINEERING AND LANDSCAPE MANAGEMENT, 2024, 32 (02) : 93 - 103
  • [5] Seasonality of Surface Urban Heat Island in Delhi City Region Measured by Local Climate Zones and Conventional Indicators
    Budhiraja, Bakul
    Gawuc, Lech
    Agrawal, Girish
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (12) : 5223 - 5232
  • [6] Urban heat island modelling of a tropical city: case of Kuala Lumpur
    Wang, Kai
    Aktas, Yasemin D.
    Stocker, Jenny
    Carruthers, David
    Hunt, Julian
    Malki-Epshtein, Liora
    GEOSCIENCE LETTERS, 2019, 6 (1) : 1 - 11
  • [7] Diverse cooling effects of green space on urban heat island in tropical megacities
    Li, Chunbo
    Lu, Linlin
    Fu, Zongtang
    Sun, Ranhao
    Pan, Luyang
    Han, Liying
    Guo, Huadong
    Li, Qingting
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [8] Understanding the spatiotemporal pattern of the urban heat island footprint in the context of urbanization, a case study in Beijing, China
    Yao, Lei
    Sun, Shuo
    Song, Chaoxue
    Li, Jun
    Xu, Wentian
    Xu, Ying
    APPLIED GEOGRAPHY, 2021, 133
  • [9] Spatial Variation of Land Use/Cover Composition and Impact on Surface Urban Heat Island in a Tropical Sub-Saharan City of Accra, Ghana
    Athukorala, Darshana
    Murayama, Yuji
    SUSTAINABILITY, 2020, 12 (19)
  • [10] Evidence of urban heat island impacts on the vegetation growing season length in a tropical city
    Kabano, Peter
    Lindley, Sarah
    Harris, Angela
    LANDSCAPE AND URBAN PLANNING, 2021, 206