Long-Range Order for Critical Book-Ising and Book-Percolation

被引:0
作者
Hugo Duminil-Copin
Christophe Garban
Vincent Tassion
机构
[1] Université de Genève,Université Claude Bernard Lyon1, CNRS UMR 5208, Institut Camille Jordan
[2] Institut des Hautes Études Scientifiques,Department of Mathematics
[3] Villeurbanne,undefined
[4] France and Institut Universitaire de France (IUF),undefined
[5] ETH Zurich,undefined
来源
Communications in Mathematical Physics | 2023年 / 404卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the behaviour of statistical physics models on a book with pages that are isomorphic to half-planes. We show that even for models undergoing a continuous phase transition on Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^2$$\end{document}, the phase transition becomes discontinuous as soon as the number of pages is sufficiently large. In particular, we prove that the Ising model on a three pages book has a discontinuous phase transition (if one allows oneself to consider large coupling constants along the line on which pages are glued). Our work confirms predictions in theoretical physics which relied on renormalization group, conformal field theory and numerics (Cardy in J Phys A Math Gen 24(22):L131, 1991; Iglói et al. in J Phys A Math Gen 24(17):L1031, 1991; Stéphan et al. in Phys Rev B 82(12):125455, 2010) some of which were motivated by the analysis of the Renyi entropy of certain quantum spin systems.
引用
收藏
页码:1309 / 1339
页数:30
相关论文
共 50 条
[1]  
Aizenman M(1982)Geometric analysis of Commun. Math. Phys. 86 1-48
[2]  
Aizenman M(1988) fields and Ising models: I, II J. Stat. Phys. 50 1-40
[3]  
Chayes JT(2015)Discontinuity of the magnetization in one-dimensional Commun. Math. Phys. 334 719-742
[4]  
Chayes L(2019) ising and potts models Invent. Math. 216 661-743
[5]  
Newman CM(1973)Random currents and continuity of Ising model’s spontaneous magnetization J. Phys. C Solid State Phys. 6 L445-542
[6]  
Aizenman M(2012)Emergent planarity in two-dimensional Ising models with finite-range interactions Probab. Theory Related Fields 153 511-168
[7]  
Duminil-Copin H(2006)Potts model at the critical temperature Probab. Theory Relat. Fields 135 153-1198
[8]  
Sidoravicius V(1991)The self-dual point of the two-dimensional random-cluster model is critical for J. Phys. A Math. Gen. 24 L131-99
[9]  
Aizenman M(2011)Translation invariant Gibbs states for the Ising model Commun. Pure Appl. Math. 64 1165-107
[10]  
Duminil-Copin H(2018)The Ising model in a random boundary field Electron. J. Probab. 23 1-564